Alternative regularizations for Outer-Approximation algorithms for convex MINLP

被引:4
作者
Bernal, David E. [1 ,2 ,7 ]
Peng, Zedong [3 ,4 ]
Kronqvist, Jan [5 ,6 ]
Grossmann, Ignacio E. [7 ]
机构
[1] NASA, Ames Res Ctr, Quantum Artificial Intelligence Lab QuAIL, Mountain View, CA USA
[2] Univ Space Res Assoc, Res Inst Adv Comp Sci, Mountain View, CA USA
[3] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou, Peoples R China
[4] JD Com, Business Growth BU, Beijing, Peoples R China
[5] KTH Royal Inst Technol, Dept Math, Optimizat & Syst Theory, Stockholm, Sweden
[6] Imperial Coll London, Dept Comp, London, England
[7] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
关键词
Convex MINLP; Outer-Approximation; Regularization for mixed-integer optimization; CUTTING-PLANE METHOD; SEARCH ALGORITHM; OPTIMIZATION; REFORMULATIONS; BRANCH;
D O I
10.1007/s10898-022-01178-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work, we extend the regularization framework from Kronqvist et al. (Math Program 180(1):285-310, 2020) by incorporating several new regularization functions and develop a regularized single-tree search method for solving convex mixed-integer nonlinear programming (MINLP) problems. We propose a set of regularization functions based on distance metrics and Lagrangean approximations, used in the projection problem for finding new integer combinations to be used within the Outer-Approximation (OA) method. The new approach, called Regularized Outer-Approximation (ROA), has been implemented as part of the open-source Mixed-integer nonlinear decomposition toolbox for Pyomo-MindtPy. We compare the OA method with seven regularization function alternatives for ROA. Moreover, we extend the LP/NLP Branch and Bound method proposed by Quesada and Grossmann (Comput Chem Eng 16(10-11):937-947, 1992) to include regularization in an algorithm denoted RLP/NLP. We provide convergence guarantees for both ROA and RLP/NLP. Finally, we perform an extensive computational experiment considering all convex MINLP problems in the benchmark library MINLPLib. The computational results show clear advantages of using regularization combined with the OA method.
引用
收藏
页码:807 / 842
页数:36
相关论文
共 50 条
[1]   FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs [J].
Abhishek, Kumar ;
Leyffer, Sven ;
Linderoth, Jeff .
INFORMS JOURNAL ON COMPUTING, 2010, 22 (04) :555-567
[2]  
[Anonymous], 2000, MOS-SIAM Series on Optimization, DOI DOI 10.1137/1.9780898719857
[3]  
Bagirov A., 2014, Introduction to Nonsmooth Optimization, DOI DOI 10.1007/978-3-319-08114-4
[4]   Improving the performance of DICOPT in convex MINLP problems using a feasibility pump [J].
Bernal, David E. ;
Vigerske, Stefan ;
Trespalacios, Francisco ;
Grossmann, Ignacio E. .
OPTIMIZATION METHODS & SOFTWARE, 2020, 35 (01) :171-190
[5]  
Bernal DavidE., 2018, COMPUTER AIDED CHEM, V44, P895
[6]  
Boggs P.T., 1995, Acta numerica, V4, P1, DOI [10.1017/s0962492900002518, DOI 10.1017/S0962492900002518]
[7]   An algorithmic framework for convex mixed integer nonlinear programs [J].
Bonami, Pierre ;
Biegler, Lorenz T. ;
Conna, Andrew R. ;
Cornuejols, Gerard ;
Grossmann, Ignacio E. ;
Laird, Carl D. ;
Lee, Jon ;
Lodi, Andrea ;
Margot, Francois ;
Sawaya, Nicolas ;
Wachter, Andreas .
DISCRETE OPTIMIZATION, 2008, 5 (02) :186-204
[8]   A Feasibility Pump for mixed integer nonlinear programs [J].
Bonami, Pierre ;
Cornuejols, Gerard ;
Lodi, Andrea ;
Margot, Francois .
MATHEMATICAL PROGRAMMING, 2009, 119 (02) :331-352
[9]   Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO [J].
Boukouvala, Fani ;
Misener, Ruth ;
Floudas, Christodoulos A. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 252 (03) :701-727
[10]   PAVER 2.0: an open source environment for automated performance analysis of benchmarking data [J].
Bussieck, Michael R. ;
Dirkse, Steven P. ;
Vigerske, Stefan .
JOURNAL OF GLOBAL OPTIMIZATION, 2014, 59 (2-3) :259-275