High-Entropy Metal Sulfide Nanoparticles Promise High-Performance Oxygen Evolution Reaction

被引:367
作者
Cui, Mingjin [1 ]
Yang, Chunpeng [1 ]
Li, Boyang [2 ]
Dong, Qi [1 ]
Wu, Meiling [1 ]
Hwang, Sooyeon [3 ]
Xie, Hua [1 ]
Wang, Xizheng [1 ]
Wang, Guofeng [2 ]
Hu, Liangbing [1 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA
[3] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
基金
美国国家科学基金会;
关键词
catalytic stability; high‐ entropy; oxygen evolution reaction; synergistic effect; transition‐ metal sulfide nanoparticles; BIFUNCTIONAL ELECTROCATALYST; WATER OXIDATION; EFFICIENT; HYDROGEN; CATALYST; NANOSHEETS;
D O I
10.1002/aenm.202002887
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition metal sulfides with a multi-elemental nature represent a class of promising catalysts for oxygen evolution reaction (OER) owing to their good catalytic activity. However, their synthesis remains a challenge due to the thermodynamic immiscibility of the constituent multimetallic elements in a sulfide structure. Herein, for the first time the synthesis of high-entropy metal sulfide (HEMS, i.e., (CrMnFeCoNi)S-x) solid solution nanoparticles is reported. Computational and X-ray photoelectron spectroscopy analysis suggest that the (CrMnFeCoNi)S-x exhibits a synergistic effect among metal atoms that leads to desired electronic states to enhance OER activity. The (CrMnFeCoNi)S-x nanoparticles show one of the best activities (low overpotential 295 mV at 100 mA cm(-2) in 1 m KOH solution) and good durability (only slight polarization after 10 h by chronopotentiometry) compared with their unary, binary, ternary, and quaternary sulfide counterparts. This work opens up a new synthesis paradigm for high-entropy compound nanoparticles for highly efficient electrocatalysis applications.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction [J].
Bergmann, Arno ;
Jones, Travis E. ;
Moreno, Elias Martinez ;
Teschner, Detre ;
Chernev, Petko ;
Gliech, Manuel ;
Reier, Tobias ;
Dau, Holger ;
Strasser, Peter .
NATURE CATALYSIS, 2018, 1 (09) :711-719
[2]  
Cabán-Acevedo M, 2015, NAT MATER, V14, P1245, DOI [10.1038/NMAT4410, 10.1038/nmat4410]
[3]   Oxygen-Containing Amorphous Cobalt Sulfide Porous Nanocubes as High-Activity Electrocatalysts for the Oxygen Evolution Reaction in an Alkaline/Neutral Medium [J].
Cai, Pingwei ;
Huang, Junheng ;
Chen, Junxiang ;
Wen, Zhenhai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (17) :4858-4861
[4]   Copper Cobalt Sulfide Nanosheets Realizing a Promising Electrocatalytic Oxygen Evolution Reaction [J].
Chauhan, Meenakshi ;
Reddy, Kasala Prabhakar ;
Gopinath, Chinnakonda S. ;
Deka, Sasanka .
ACS CATALYSIS, 2017, 7 (09) :5871-5879
[5]   Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization [J].
Chen, Hao ;
Lin, Wenwen ;
Zhang, Zihao ;
Jie, Kecheng ;
Mullins, David R. ;
Sang, Xiahan ;
Yang, Shi-Ze ;
Jafta, Charl J. ;
Bridges, Craig A. ;
Hu, Xiaobing ;
Unocic, Raymond R. ;
Fu, Jie ;
Zhang, Pengfei ;
Dai, Sheng .
ACS MATERIALS LETTERS, 2019, 1 (01) :83-88
[6]   Coupling Effect of Piezo-Flexocatalytic Hydrogen Evolution with Hybrid 1T-and 2H-Phase Few-Layered MoSe2Nanosheets [J].
Chung, Yun-Jung ;
Yang, Cheng-Shiun ;
Lee, Jyun-Ting ;
Wu, Guan Hua ;
Wu, Jyh Ming .
ADVANCED ENERGY MATERIALS, 2020, 10 (42)
[7]   High-Performance Pd3Pb Intermetallic Catalyst for Electrochemical Oxygen Reduction [J].
Cui, Zhiming ;
Chen, Hao ;
Zhao, Mengtian ;
DiSalvo, Francis J. .
NANO LETTERS, 2016, 16 (04) :2560-2566
[8]   High-performance electrolytic oxygen evolution with a seamless armor core-shell FeCoNi oxynitride [J].
Di, Jun ;
Zhu, Huiyuan ;
Xia, Jiexiang ;
Bao, Jian ;
Zhang, Pengfei ;
Yang, Shi-Ze ;
Li, Huaming ;
Dai, Sheng .
NANOSCALE, 2019, 11 (15) :7239-7246
[9]   Recent progress in Co9S8-based materials for hydrogen and oxygen electrocatalysis [J].
Dong, Dongqi ;
Wu, Zexing ;
Wang, Jie ;
Fu, Gengtao ;
Tang, Yawen .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (27) :16068-16088
[10]   High-Temperature Shock Enabled Nanomanufacturing for Energy-Related Applications [J].
Dou, Shuming ;
Xu, Jie ;
Cui, Xiaoya ;
Liu, Weidi ;
Zhang, Zhicheng ;
Deng, Yida ;
Hu, Wenbin ;
Chen, Yanan .
ADVANCED ENERGY MATERIALS, 2020, 10 (33)