Protonation/deprotonation process of Emodin in aqueous solution and pKa determination: UV/Visible spectrophotometric titration and quantum/molecular mechanics calculations

被引:43
作者
da Cunha, Antonio R. [1 ]
Duarte, Evandro L. [1 ]
Teresa Lamy, M. [1 ]
Coutinho, Kaline [1 ]
机构
[1] Univ Sao Paulo, Inst Fis, BR-05508 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Protonation/deprotonation process; Acidity constant; Deprotonation free energy; Theoretical calculation; Experimental measurement; UV/Visible spectrophotometric titration curves; ACCURATE EXPERIMENTAL VALUES; SOLVATION FREE-ENERGIES; COMBINED MONTE-CARLO; DISSOCIATION-CONSTANTS; COMPUTATIONAL DETERMINATION; DRUG EMODIN; PKA VALUES; GAS-PHASE; CONTINUUM; WATER;
D O I
10.1016/j.chemphys.2014.06.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We combined theoretical and experimental studies to elucidate the important deprotonation process of Emodin in water. We used the UV/Visible spectrophotometric titration curves to obtain its pK(a) values, pK(a1) = 8.0 +/- 0.1 and pK(a2) = 10.9 +/- 0.2. Additionally, we obtained the pK(a) values of Emodin in the water-methanol mixture (1:3v/v). We give a new interpretation of the experimental data, obtaining apparent pK(a1) = 6.2 +/- 0.1, pK(a2) = 8.3 +/- 0.1 and pK(a3) > 12.7. Performing quantum mechanics calculations for all possible deprotonation sites and tautomeric isomers of Emodin in vacuum and in water, we identified the sites of the first and second deprotonation. We calculated the standard deprotonation free energy of Emodin in water and the pK(a1), using an explicit model of the solvent, with Free Energy Perturbation theory in Monte Carlo simulations obtaining, Delta G(aq) = 12.1 +/- 1.4 kcal/mol and pK(a1) = 8.7 +/- 0.9. With the polarizable continuum model for the solvent, we obtained Delta G(aq) = 11.6 +/- 1.0 kcal/mol and pK(a1) = 8.3 +/- 0.7. Both solvent models gave theoretical results in very good agreement with the experimental values. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 88 条
[1]  
Allen M. P., 2017, COMPUTER SIMULATION
[2]   Membrane-related effects underlying the biological activity of the anthraquinones emodin and barbaloin [J].
Alves, DS ;
Pérez-Fons, L ;
Estepa, A ;
Micol, V .
BIOCHEMICAL PHARMACOLOGY, 2004, 68 (03) :549-561
[3]   METABOLIC PRODUCTS OF MICROORGANISMS .192. THE ANTHRAQUINONES OF THE ASPERGILLUS GLAUCUS GROUP .2. BIOLOGICAL-ACTIVITY [J].
ANKE, H ;
KOLTHOUM, I ;
LAATSCH, H .
ARCHIVES OF MICROBIOLOGY, 1980, 126 (03) :231-236
[4]  
[Anonymous], 1980, Biophysical Chemistry: Part III: The Behavior of Biological Macromolecules
[5]  
[Anonymous], 1992, UV-VIS Spectroscopy and Its Applications
[6]  
[Anonymous], 2003, DICE MONTE CARLO PRO
[7]  
[Anonymous], 1980, Biophysical Chemistry, Part II: Techniques for the Study of Biological Structure and Function
[8]   EVALUATION OF THE ANTIVIRAL ACTIVITY OF ANTHRAQUINONES, ANTHRONES AND ANTHRAQUINONE DERIVATIVES AGAINST HUMAN CYTOMEGALOVIRUS [J].
BARNARD, DL ;
HUFFMAN, JH ;
MORRIS, JLB ;
WOOD, SG ;
HUGHES, BG ;
SIDWELL, RW .
ANTIVIRAL RESEARCH, 1992, 17 (01) :63-77
[9]   A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J].
Barone, V ;
Cossi, M ;
Tomasi, J .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08) :3210-3221
[10]   Combined Monte Carlo and quantum mechanics study of the solvatochromism of phenol in water. The origin of the blue shift of the lowest π-π* transition [J].
Barreto, Rafael C. ;
Coutinho, Kaline ;
Georg, Herbert C. ;
Canuto, Sylvio .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (09) :1388-1396