Modification of the Structure of the Hypereutectic Silumin Alloy Al-44Si under the Action of Compression Plasma Flows

被引:0
作者
Shymanski, V., I [1 ]
Jevdokimovs, A. [1 ]
Uglov, V. V. [1 ,2 ]
Cherenda, N. N. [1 ,2 ]
Astashynski, V. M. [3 ]
Kuzmitsky, A. M. [3 ]
Bibik, N., V [1 ]
Petrikova, E. A. [4 ]
机构
[1] Belarusian State Univ, Minsk 220030, BELARUS
[2] South Ural State Univ, Chelyabinsk 454080, Russia
[3] Natl Acad Sci Belarus, Luikov Heat & Mass Transfer Inst, Minsk 220072, BELARUS
[4] Russian Acad Sci, Inst High Current Elect, Siberian Branch, Tomsk 634055, Russia
基金
俄罗斯基础研究基金会;
关键词
hypereutectic silumin alloy; compression plasma flows; microstructure modification; phase state; melting; MECHANICAL-PROPERTIES; SI;
D O I
10.1134/S2075113322030340
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of high-energy compression plasma flows on the structure, elemental composition, and phase state of Al-44 at % Si hypereutectic silumin alloy have been investigated. Using scanning electron and optical microscopy it was found that a decrease in grain size of both primary silicon particles and Al-Si eutectic components occurs with an increase in absorbed energy density of compression plasma flows. The primary silicon crystals were dispersed down to 300 nm as a result of the high cooling rate of the melted layer after its homogenization by means of hydrodynamic mixing. It was found that, with the increase in the absorbed energy density, homogenization of the elemental composition in the modified layer occurs owing to an increase in the lifetime of the melted state and a more efficient mixing process.
引用
收藏
页码:701 / 709
页数:9
相关论文
共 15 条
[1]   Compressive plasma flows interaction with steel surface: structure and mechanical properties of modified layer [J].
Anishchik, VM ;
Uglov, VV ;
Astashynski, VV ;
Astashynski, VM ;
Ananin, SI ;
Kostyukevich, EA ;
Kuzmitski, AM ;
Kvasov, NT ;
Danilyuk, AL ;
Rumianceva, IN .
VACUUM, 2003, 70 (2-3) :269-274
[2]   Modification of Ti-6A1-4V alloy element and phase composition by compression plasma flows impact [J].
Cherenda, N. N. ;
Basalai, A. V. ;
Shymanski, V. I. ;
Uglov, V. V. ;
Astashynski, V. M. ;
Kuzmitski, A. M. ;
Laskovnev, A. P. ;
Remnev, G. E. .
SURFACE & COATINGS TECHNOLOGY, 2018, 355 :148-154
[3]  
[Черенда Николай Николаевич Cherenda N.N.], 2013, [Физика и химия обработки материалов, Fizika i khimiya obrabotki materialov], P37
[4]  
Cherenda N.N., 2012, FIZ KHIM OBRAB MATER, P3742
[5]  
Choudhary C., 2018, Mater. Today: Proc, V5, P27107, DOI [10.1016/j.matpr.2018.09.017, DOI 10.1016/J.MATPR.2018.09.017]
[6]   Superplasticity of the Al-18% Si microcrystalline hypereutectic alloy [J].
Chuvil'deev, V. N. ;
Gryaznov, M. Yu. ;
Kopylov, V. I. ;
Sysoev, A. N. ;
Lopatin, Yu. G. .
DOKLADY PHYSICS, 2008, 53 (03) :148-151
[7]  
Gavrilin I.V., 2003, POLUCHENIE LITEINYKH
[8]   Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys [J].
Jeon, J. H. ;
Shin, J. H. ;
Bae, D. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2019, 748 :367-370
[9]   A novel modifier on eutectic Si and mechanical properties of Al-Si alloy [J].
Jiang, Bo ;
Ji, Zesheng ;
Hu, Maoliang ;
Xu, Hongyu ;
Xu, Song .
MATERIALS LETTERS, 2019, 239 :13-16
[10]   The varied mechanisms of yttrium (Y) modifying a hypoeutectic Al-Si alloy under conditions of different cooling rates [J].
Mao, Guoling ;
Yan, Han ;
Zhu, Congcong ;
Wu, Zhen ;
Gao, Wenli .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 806 :909-916