Recent progress on desiccant materials for solid desiccant cooling systems

被引:275
作者
Zheng, X. [1 ]
Ge, T. S. [1 ]
Wang, R. Z. [1 ]
机构
[1] Shanghai Jiao Tong Univ, Key Lab Power Machinery & Engn MOE, Inst Refrigerat & Cryogen, Shanghai 200240, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Desiccant material; Solid desiccant cooling; Water adsorption capacity; Regeneration; METAL-ORGANIC FRAMEWORKS; SELECTIVE WATER SORBENTS; SILICA-GEL; MOLECULAR-SIEVES; MULTIPLE APPLICATIONS; COMPOSITE ADSORBENTS; HEAT TRANSFORMATION; COORDINATION POLYMERS; ACTIVATED CARBON; ADSORPTION;
D O I
10.1016/j.energy.2014.07.027
中图分类号
O414.1 [热力学];
学科分类号
摘要
SDC (Solid desiccant cooling) systems have gained increasing interest as an alternative air conditioning technology. Performance of desiccant plays a crucial role in overall performance of the whole system, especially in terms of dehumidification and regeneration capacity. It is desirable to explore desiccant possessing high adsorption capacity and good regeneration ability. Thus, this review summarizes recent researches and developments on novel solid desiccant materials that can be adopted,in SDC systems. The materials include composite desiccants, nanoporous inorganic materials and polymeric desiccants. Adsorption isotherms are concluded and compared. Regeneration ability is also considered for full use of low grade thermal energy. Results show that by proper selection of host matrix and immersed salts, composite desiccants have improved capacity of dehumidification and regeneration. Besides, a good balance can be reached between regeneration and adsorption capacity by tailoring textural properties of nanoporous inorganic materials. For polymeric desiccants, especially MIL type (materials of Institute Lavoisier Frameworks), further progress in adsorptive dehumidification will be anticipated. Though some novel materials approach requirements for SDC systems, no material currently available can perfectly satisfy all the required demands. In this case, more intensive researches in the field of development and evaluation of advanced materials are still required. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:280 / 294
页数:15
相关论文
共 140 条
[1]  
Akiyama G, 2012, MICROPOROUS MESOPORO
[2]   Highly Porous and Stable Coordination Polymers as Water Sorption Materials [J].
Akiyama, George ;
Matsuda, Ryotaro ;
Kitagawa, Susumu .
CHEMISTRY LETTERS, 2010, 39 (04) :360-361
[3]  
[Anonymous], 2008, KIRK OTHMER ENCY CHE
[4]   Selective water sorbents for multiple applications .1. CaCl2 confined in mesopores of silica gel: Sorption properties [J].
Aristov, YI ;
Tokarev, M ;
Cacciola, G ;
Restuccia, G .
REACTION KINETICS AND CATALYSIS LETTERS, 1996, 59 (02) :325-333
[5]   Selective water sorbents for multiple applications.: 11.: CaCl2 confined to expanded vermiculite [J].
Aristov, YI ;
Restuccia, G ;
Tokarev, MM ;
Buerger, HD ;
Freni, A .
REACTION KINETICS AND CATALYSIS LETTERS, 2000, 71 (02) :377-384
[6]   Reallocation of adsorption and desorption times for optimisation of cooling cycles [J].
Aristov, Yu. I. ;
Sapienza, A. ;
Ovoshchnikov, D. S. ;
Freni, A. ;
Restuccia, G. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2012, 35 (03) :525-531
[7]   New family of solid sorbents for adsorptive cooling: Material scientist approach [J].
Aristov Yu.I. .
Journal of Engineering Thermophysics, 2007, 16 (2) :63-72
[8]   Challenging offers of material science for adsorption heat transformation: A review [J].
Aristov, Yuriy I. .
APPLIED THERMAL ENGINEERING, 2013, 50 (02) :1610-1618
[9]   Novel Materials for Adsorptive Heat Pumping and Storage: Screening and Nanotailoring of Sorption Properties [J].
Aristov, Yury I. .
JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2007, 40 (13) :1242-1251
[10]   Tailored porous materials [J].
Barton, TJ ;
Bull, LM ;
Klemperer, WG ;
Loy, DA ;
McEnaney, B ;
Misono, M ;
Monson, PA ;
Pez, G ;
Scherer, GW ;
Vartuli, JC ;
Yaghi, OM .
CHEMISTRY OF MATERIALS, 1999, 11 (10) :2633-2656