Estimation of Multiple Sclerosis lesion age on magnetic resonance imaging

被引:12
作者
Sweeney, Elizabeth M. [1 ]
Nguyen, Thanh D. [2 ]
Kuceyeski, Amy [2 ,3 ]
Ryan, Sarah M. [4 ]
Zhang, Shun [5 ]
Zexter, Lily [6 ]
Wang, Yi [2 ]
Gauthier, Susan A. [2 ,3 ,6 ]
机构
[1] Weill Cornell Med Coll, Dept Populat Hlth Sci, New York, NY 10065 USA
[2] Weill Cornell Med Coll, Dept Radiol, New York, NY USA
[3] Weill Cornell Med Coll, Brain & Mind Inst, New York, NY USA
[4] Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO USA
[5] Tongji Hosp, Dept Radiol, Wuhan, Peoples R China
[6] Weill Cornell Med Coll, Dept Neurol, New York, NY USA
基金
美国国家卫生研究院;
关键词
SUSCEPTIBILITY MAPPING QSM; DIAGNOSTIC-CRITERIA; BRAIN; MRI; GUIDELINES; REVISIONS; PATTERNS; ROBUST;
D O I
10.1016/j.neuroimage.2020.117451
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We introduce the first-ever statistical framework for estimating the age of Multiple Sclerosis (MS) lesions from magnetic resonance imaging (MRI). Estimating lesion age is an important step when studying the longitudinal behavior of MS lesions and can be used in applications such as studying the temporal dynamics of chronic active MS lesions. Our lesion age estimation models use first order radiomic features over a lesion derived from conventional T1 (T1w) and T2 weighted (T2w) and fluid attenuated inversion recovery (FLAIR), T1w with gadolinium contrast (T1w+c), and Quantitative Susceptibility Mapping (QSM) MRI sequences as well as demographic information. For this analysis, we have a total of 32 patients with 53 new lesions observed at 244 time points. A one or two step random forest model for lesion age is fit on a training set using a lesion volume cutoff of 15 mm(3) or 50 mm(3). We explore the performance of nine different modeling scenarios that included various combinations of the MRI sequences and demographic information and a one or two step random forest models, as well as simpler models that only uses the mean radiomic feature from each MRI sequence. The best performing model on a validation set is a model that uses a two-step random forest model on the radiomic features from all of the MRI sequences with demographic information using a lesion volume cutoff of 50 mm(3). This model has a mean absolute error of 7.23 months (95% CI: [6.98, 13.43]) and a median absolute error of 5.98 months (95% CI: [5.26, 13.25]) in the validation set. For this model, the predicted age and actual age have a statistically significant association (p-value <0.001) in the validation set.
引用
收藏
页数:14
相关论文
共 47 条
[1]   Association of Chronic Active Multiple Sclerosis Lesions With Disability In Vivo [J].
Absinta, Martina ;
Sati, Pascal ;
Masuzzo, Federica ;
Nair, Govind ;
Sethi, Varun ;
Kolb, Hadar ;
Ohayon, Joan ;
Wu, Tianxia ;
Cortese, Irene C. M. ;
Reich, Daniel S. .
JAMA NEUROLOGY, 2019, 76 (12) :1474-1483
[2]   Persistent 7-tesla phase rim predicts poor outcome in new multiple sclerosis patient lesions [J].
Absinta, Martina ;
Sati, Pascal ;
Schindler, Matthew ;
Leibovitch, Emily C. ;
Ohayon, Joan ;
Wu, Tianxia ;
Meani, Alessandro ;
Filippi, Massimo ;
Jacobson, Steven ;
Cortese, Irene C. M. ;
Reich, Daniel S. .
JOURNAL OF CLINICAL INVESTIGATION, 2016, 126 (07) :2597-2609
[3]  
[Anonymous], FUNCTIONAL DATA ANAL
[4]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Quantitative Susceptibility Mapping of Multiple Sclerosis Lesions at Various Ages [J].
Chen, Weiwei ;
Gauthier, Susan A. ;
Gupta, Ajay ;
Comunale, Joseph ;
Liu, Tian ;
Wang, Shuai ;
Pei, Mengchao ;
Pitt, David ;
Wang, Yi .
RADIOLOGY, 2014, 271 (01) :183-192
[7]   Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging [J].
Dal-Bianco, Assunta ;
Grabner, Guenther ;
Kronnerwetter, Claudia ;
Weber, Michael ;
Hoeftberger, Romana ;
Berger, Thomas ;
Auff, Eduard ;
Leutmezer, Fritz ;
Trattnig, Siegfried ;
Lassmann, Hans ;
Bagnato, Francesca ;
Hametner, Simon .
ACTA NEUROPATHOLOGICA, 2017, 133 (01) :25-42
[8]   Quantitative Susceptibility Map Reconstruction from MR Phase Data Using Bayesian Regularization: Validation and Application to Brain Imaging [J].
de Rochefort, Ludovic ;
Liu, Tian ;
Kressler, Bryan ;
Liu, Jing ;
Spincemaille, Pascal ;
Lebon, Vincent ;
Wu, Jianlin ;
Wang, Yi .
MAGNETIC RESONANCE IN MEDICINE, 2010, 63 (01) :194-206
[9]   Multicenter reproducibility of quantitative susceptibility mapping in a gadolinium phantom using MEDI+0 automatic zero referencing [J].
Deh, Kofi ;
Kawaji, Keigo ;
Bulk, Marjolein ;
Van der Weerd, Louise ;
Lind, Emelie ;
Spincemaille, Pascal ;
Gillen, Kelly McCabe ;
Van Auderkerke, Johan ;
Wang, Yi ;
Nguyen, Thanh D. .
MAGNETIC RESONANCE IN MEDICINE, 2019, 81 (02) :1229-1236
[10]   Magnetic susceptibility increases as diamagnetic molecules breakdown: Myelin digestion during multiple sclerosis lesion formation contributes to increase on QSM [J].
Deh, Kofi ;
Ponath, Gerald D. ;
Molvi, Zaki ;
Parel, Gian-Carlo T. ;
Gillen, Kelly M. ;
Zhang, Shun ;
Nguyen, Thanh D. ;
Spincemaille, Pascal ;
Ma, Yinghua ;
Gupta, Ajay ;
Gauthier, Susan A. ;
Pitt, David ;
Wang, Yi .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (05) :1281-1287