Low emittance electron beam generation from a laser wakefield accelerator using two laser pulses with different wavelengths

被引:53
作者
Xu, X. L. [1 ]
Wu, Y. P. [1 ]
Zhang, C. J. [1 ]
Li, F. [1 ]
Wan, Y. [1 ]
Hua, J. F. [1 ]
Pai, C. -H. [1 ]
Lu, W. [1 ]
Yu, P. [2 ]
Joshi, C. [2 ]
Mori, W. B. [2 ]
机构
[1] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
[2] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
来源
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS | 2014年 / 17卷 / 06期
基金
美国国家科学基金会;
关键词
IONIZATION;
D O I
10.1103/PhysRevSTAB.17.061301
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Ionization injection triggered by short wavelength laser pulses inside a nonlinear wakefield driven by a longer wavelength laser is examined via multidimensional particle-in-cell simulations. We find that very bright electron beams can be generated through this two-color scheme in either collinear propagating or transverse colliding geometry. For a fixed laser intensity I, lasers with longer/shorter wavelength lambda have larger/smaller ponderomotive potential (alpha I lambda(2)). The two-color scheme utilizes this property to separate the injection process from the wakefield excitation process. Very strong wakes can be generated at relatively low laser intensities by using a longer wavelength laser driver (e.g., a 10 mu m CO2 laser) due to its very large ponderomotive potential. On the other hand, a short wavelength laser can produce electrons with very small residual momenta (p(perpendicular to) similar to a(0) similar to root I lambda) inside the wake, leading to electron beams with very small normalized emittances (tens of nm). Using particle-in-cell simulations we show that a similar to 10 fs electron beam with similar to 4 pC of charge and a normalized emittance of similar to 50 nm can be generated by combining a 10 mu m driving laser with a 400 nm injection laser, which is an improvement of more than 1 order of magnitude compared to the typical results obtained when a single wavelength laser is used for both the wake formation and ionization injection. With the transverse colliding geometry, simulations show that similarly low emittance and much lower slice energy spread (similar to 30 keV, comparing with the typical value of few MeV in the longitudinal injection scheme) can be simultaneously obtained for electron beams with a few pC charge. Such low slice energy spread may have significant advantages in applications relevant to future coherent light sources driven by plasma accelerators.
引用
收藏
页数:10
相关论文
共 36 条
[1]  
Ammosov M. V., 1986, Soviet Physics - JETP, V64, P1191
[2]   Free electron lasers: Present status and future challenges [J].
Barletta, W. A. ;
Bisognano, J. ;
Corlett, J. N. ;
Emma, P. ;
Huang, Z. ;
Kim, K. -J. ;
Lindberg, R. ;
Murphy, J. B. ;
Neil, G. R. ;
Nguyen, D. C. ;
Pellegrini, C. ;
Rimmer, R. A. ;
Sannibale, F. ;
Stupakov, G. ;
Walker, R. P. ;
Zholents, A. A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 618 (1-3) :69-96
[3]   Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator [J].
Blumenfeld, Ian ;
Clayton, Christopher E. ;
Decker, Franz-Josef ;
Hogan, Mark J. ;
Huang, Chengkun ;
Ischebeck, Rasmus ;
Iverson, Richard ;
Joshi, Chandrashekhar ;
Katsouleas, Thomas ;
Kirby, Neil ;
Lu, Wei ;
Marsh, Kenneth A. ;
Mori, Warren B. ;
Muggli, Patric ;
Oz, Erdem ;
Siemann, Robert H. ;
Walz, Dieter ;
Zhou, Miaomiao .
NATURE, 2007, 445 (7129) :741-744
[4]   Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced Injection [J].
Clayton, C. E. ;
Ralph, J. E. ;
Albert, F. ;
Fonseca, R. A. ;
Glenzer, S. H. ;
Joshi, C. ;
Lu, W. ;
Marsh, K. A. ;
Martins, S. F. ;
Mori, W. B. ;
Pak, A. ;
Tsung, F. S. ;
Pollock, B. B. ;
Ross, J. S. ;
Silva, L. O. ;
Froula, D. H. .
PHYSICAL REVIEW LETTERS, 2010, 105 (10)
[5]   ABOVE-THRESHOLD IONIZATION IN THE LONG-WAVELENGTH LIMIT [J].
CORKUM, PB ;
BURNETT, NH ;
BRUNEL, F .
PHYSICAL REVIEW LETTERS, 1989, 62 (11) :1259-1262
[6]   Cold Optical Injection Producing Monoenergetic, Multi-GeV Electron Bunches [J].
Davoine, X. ;
Lefebvre, E. ;
Rechatin, C. ;
Faure, J. ;
Malka, V. .
PHYSICAL REVIEW LETTERS, 2009, 102 (06)
[7]   Physics of laser-driven plasma-based electron accelerators [J].
Esarey, E. ;
Schroeder, C. B. ;
Leemans, W. P. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1229-1285
[8]   Measurements of the Critical Power for Self-Injection of Electrons in a Laser Wakefield Accelerator [J].
Froula, D. H. ;
Clayton, C. E. ;
Doeppner, T. ;
Marsh, K. A. ;
Barty, C. P. J. ;
Divol, L. ;
Fonseca, R. A. ;
Glenzer, S. H. ;
Joshi, C. ;
Lu, W. ;
Martins, S. F. ;
Michel, P. ;
Mori, W. B. ;
Palastro, J. P. ;
Pollock, B. B. ;
Pak, A. ;
Ralph, J. E. ;
Ross, J. S. ;
Siders, C. W. ;
Silva, L. O. ;
Wang, T. .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)
[9]   Plasma-density-gradient injection of low absolute-momentum-spread electron bunches [J].
Geddes, C. G. R. ;
Nakamura, K. ;
Plateau, G. R. ;
Toth, Cs. ;
Cormier-Michel, E. ;
Esarey, E. ;
Schroeder, C. B. ;
Cary, J. R. ;
Leemans, W. P. .
PHYSICAL REVIEW LETTERS, 2008, 100 (21)
[10]   Fifteen terawatt picosecond CO2 laser system [J].
Haberberger, D. ;
Tochitsky, S. ;
Joshi, C. .
OPTICS EXPRESS, 2010, 18 (17) :17865-17875