Engineering physical microenvironement for stem cell based regenerative medicine

被引:48
作者
Han, Yu Long [1 ,2 ]
Wang, Shugi [3 ]
Zhang, Xiaohui [1 ,2 ]
Li, Yuhui [1 ,2 ]
Huang, Guoyou [1 ,2 ]
Qi, Hao [2 ]
Pingguan-Murphy, Belinda [4 ]
Li, Yinghui [5 ]
Lu, Tian Jian [2 ]
Xu, Feng [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Life Sci & Technol, Key Lab Biomed Informat Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Bioinspired Engn & Biomech Ctr, Xian 710049, Shaanxi, Peoples R China
[3] Harvard Univ, Brigham & Womens Hosp, Sch Med, Boston, MA 02115 USA
[4] Univ Malaya, Fac Engn, Dept Biomed Engn, Kuala Lumpur 50603, Malaysia
[5] China Astronaut Res & Training Ctr, State Key Lab Space Med Fundamentals & Applicat, Beijing 100094, Peoples R China
基金
对外科技合作项目(国际科技项目); 中国国家自然科学基金; 中国博士后科学基金;
关键词
STRESS INDUCES DIFFERENTIATION; EPITHELIAL BASEMENT-MEMBRANE; IN-VITRO; EXTRACELLULAR-MATRIX; SHEAR-STRESS; MICROSCALE HYDROGELS; LINEAGE SPECIFICATION; PROGENITOR CELLS; GENE-EXPRESSION; XENOPUS-LAEVIS;
D O I
10.1016/j.drudis.2014.01.015
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Regenerative medicine has rapidly evolved over the past decade owing to its potential applications to improve human health. Targeted differentiations of stem cells promise to regenerate a variety of tissues and/or organs despite significant challenges. Recent studies have demonstrated the vital role of the physical microenvironment in regulating stem cell fate and improving differentiation efficiency. In this review, we summarize the main physical cues that are crucial for controlling stem cell differentiation. Recent advances in the technologies for the construction of physical microenvironment and their implications in controlling stem cell fate are also highlighted.
引用
收藏
页码:763 / 773
页数:11
相关论文
共 127 条
[31]  
Gullberg D, 1995, INT J DEV BIOL, V39, P845
[32]   Simple Precision Creation of Digitally Specified, Spatially Heterogeneous, Engineered Tissue Architectures [J].
Gurkan, Umut Atakan ;
Fan, Yantao ;
Xu, Feng ;
Erkmen, Burcu ;
Urkac, Emel Sokullu ;
Parlakgul, Gunes ;
Bernstein, Jacob ;
Xing, Wangli ;
Boyden, Edward S. ;
Demirci, Utkan .
ADVANCED MATERIALS, 2013, 25 (08) :1192-1198
[33]   Stem Cell Response to Spatially and Temporally Displayed and Reversible Surface Topography [J].
Guvendiren, Murat ;
Burdick, Jason A. .
ADVANCED HEALTHCARE MATERIALS, 2013, 2 (01) :155-164
[34]   Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: Implications for vascular tissue-engineering applications [J].
Hamilton, DW ;
Maul, TM ;
Vorp, DA .
TISSUE ENGINEERING, 2004, 10 (3-4) :361-369
[35]   Benchtop fabrication of three-dimensional reconfigurable microfluidic devices from paper-polymer composite [J].
Han, Yu Long ;
Wang, Wenqi ;
Hu, Jie ;
Huang, Guoyou ;
Wang, ShuQi ;
Lee, Won Gu ;
Lu, Tian Jian ;
Xu, Feng .
LAB ON A CHIP, 2013, 13 (24) :4745-4749
[36]   Directed self-assembly of microscale hydrogels by electrostatic interaction [J].
Han, Yu Long ;
Yang, Yanshen ;
Liu, Shaobao ;
Wu, Jinhui ;
Chen, Yongmei ;
Lu, Tian Jian ;
Xu, Feng .
BIOFABRICATION, 2013, 5 (03)
[37]   Production of hepatocyte-like cells from human pluripotent stem cells [J].
Hannan, Nicholas R. F. ;
Segeritz, Charis-Patricia ;
Touboul, Thomas ;
Vallier, Ludovic .
NATURE PROTOCOLS, 2013, 8 (02) :430-437
[38]   Regeneration-on-a-chip? The perspectives on use of microfluidics in regenerative medicine [J].
Harink, Bjoern ;
Le Gac, Severine ;
Truckenmueller, Roman ;
van Blitterswijk, Clemens ;
Habibovic, Pamela .
LAB ON A CHIP, 2013, 13 (18) :3512-3528
[39]   Rapid Generation of Biologically Relevant Hydrogels Containing Long-Range Chemical Gradients [J].
He, Jionkang ;
Du, Yanan ;
Villa-Uribe, Jose L. ;
Hwang, Changmo ;
Li, Dichen ;
Khademhosseini, Ali .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (01) :131-137
[40]   Physical Cues of Biomaterials Guide Stem Cell Differentiation Fate [J].
Higuchi, Akon ;
Ling, Qing-Dong ;
Chang, Yung ;
Hsu, Shih-Tien ;
Umezawa, Akihiro .
CHEMICAL REVIEWS, 2013, 113 (05) :3297-3328