Engineering physical microenvironement for stem cell based regenerative medicine

被引:47
作者
Han, Yu Long [1 ,2 ]
Wang, Shugi [3 ]
Zhang, Xiaohui [1 ,2 ]
Li, Yuhui [1 ,2 ]
Huang, Guoyou [1 ,2 ]
Qi, Hao [2 ]
Pingguan-Murphy, Belinda [4 ]
Li, Yinghui [5 ]
Lu, Tian Jian [2 ]
Xu, Feng [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Life Sci & Technol, Key Lab Biomed Informat Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Bioinspired Engn & Biomech Ctr, Xian 710049, Shaanxi, Peoples R China
[3] Harvard Univ, Brigham & Womens Hosp, Sch Med, Boston, MA 02115 USA
[4] Univ Malaya, Fac Engn, Dept Biomed Engn, Kuala Lumpur 50603, Malaysia
[5] China Astronaut Res & Training Ctr, State Key Lab Space Med Fundamentals & Applicat, Beijing 100094, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 对外科技合作项目(国际科技项目);
关键词
STRESS INDUCES DIFFERENTIATION; EPITHELIAL BASEMENT-MEMBRANE; IN-VITRO; EXTRACELLULAR-MATRIX; SHEAR-STRESS; MICROSCALE HYDROGELS; LINEAGE SPECIFICATION; PROGENITOR CELLS; GENE-EXPRESSION; XENOPUS-LAEVIS;
D O I
10.1016/j.drudis.2014.01.015
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Regenerative medicine has rapidly evolved over the past decade owing to its potential applications to improve human health. Targeted differentiations of stem cells promise to regenerate a variety of tissues and/or organs despite significant challenges. Recent studies have demonstrated the vital role of the physical microenvironment in regulating stem cell fate and improving differentiation efficiency. In this review, we summarize the main physical cues that are crucial for controlling stem cell differentiation. Recent advances in the technologies for the construction of physical microenvironment and their implications in controlling stem cell fate are also highlighted.
引用
收藏
页码:763 / 773
页数:11
相关论文
共 127 条
[1]  
ADAMS DS, 1990, DEVELOPMENT, V110, P115
[2]  
Ahsan T, 2010, TISSUE ENG PT A, V16, P3547, DOI 10.1089/ten.TEA.2010.0014
[3]   In Vitro and In Vivo Interrogation of Bio-sprayed Cells [J].
Andreu, Nuria ;
Thomas, Dominique ;
Saraiva, Luisa ;
Ward, Natalie ;
Gustafsson, Kenth ;
Jayasinghe, Suwan N. ;
Robertson, Brian D. .
SMALL, 2012, 8 (16) :2495-2500
[4]   A novel direct aerodynamically assisted threading methodology for generating biologically viable microthreads encapsulating living primary cells [J].
Arumuganathar, Sumathy ;
Irvine, Scott ;
McEwan, Jean R. ;
Jayasinghe, Suwan N. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 107 (02) :1215-1225
[5]   Aerodynamically assisted bio-jets: the development of a novel and direct non-electric field-driven methodology for engineering living organisms [J].
Arumuganathar, Sumathy ;
Irvine, Scott ;
McEwan, Jean R. ;
Jayasinghe, Suwan N. .
BIOMEDICAL MATERIALS, 2007, 2 (02) :158-168
[6]   Progress and Prospects for Stem Cell Engineering [J].
Ashton, Randolph S. ;
Keung, Albert J. ;
Peltier, Joseph ;
Schaffer, David V. .
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 2, 2011, 2 :479-502
[7]   Biophysical microenvironment and 3D culture physiological relevance [J].
Asthana, Amish ;
Kisaalita, William S. .
DRUG DISCOVERY TODAY, 2013, 18 (11-12) :533-540
[8]   Structure and biological activity of the extracellular matrix [J].
Aumailley, M ;
Gayraud, B .
JOURNAL OF MOLECULAR MEDICINE-JMM, 1998, 76 (3-4) :253-265
[9]   Modulation of Wnt/β-catenin signaling in human embryonic stem cells using a 3-D microwell array [J].
Azarin, Samira M. ;
Lian, Xiaojun ;
Larson, Elise A. ;
Popelka, Heidi M. ;
de Pablo, Juan J. ;
Palecek, Sean P. .
BIOMATERIALS, 2012, 33 (07) :2041-2049
[10]   The differentiation and engraftment potential of mouse hematopoietic stem cells is maintained after bio-electrospray [J].
Bartolovic, Kerol ;
Mongkoldhumrongkul, Napachanok ;
Waddington, Simon N. ;
Jayasinghe, Suwan N. ;
Howe, Steven J. .
ANALYST, 2010, 135 (01) :157-164