Improving Land Surface Temperature Retrievals over Mountainous Regions

被引:14
作者
Bento, Virgilio A. [1 ]
DaCamara, Carlos C. [1 ]
Trigo, Isabel F. [1 ,2 ]
Martins, Joao P. A. [1 ,2 ]
Duguay-Tetzlaff, Anke [3 ]
机构
[1] Univ Lisbon, Inst Dom Luiz, Ed C1, P-1749016 Lisbon, Portugal
[2] Inst Portugues Mar & Atmosfera IP, Rua C do Aeroporto, P-1749077 Lisbon, Portugal
[3] Fed Off Meteorol & Climatol MeteoSwiss, Operat Ctr 1, CH-8058 Zurich, Switzerland
关键词
LST; Split-Windows; Mono-Window; retrieval algorithms; thermal infrared; Meteosat; water vapor; orographic correction; FILTER PHYSICAL RETRIEVAL; SPLIT-WINDOW ALGORITHM; SKIN TEMPERATURE; WATER-VAPOR; EMISSIVITY; ASSIMILATION;
D O I
10.3390/rs9010038
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Algorithms for Land Surface Temperature (LST) retrieval from infrared measurements are usually sensitive to the amount of water vapor present in the atmosphere. The Satellite Application Facilities on Climate Monitoring and Land Surface Analysis (CM SAF and LSA SAF) are currently compiling a 25 year LST Climate data record (CDR), which uses water vapor information from ERA-Int reanalysis. However, its relatively coarse spatial resolution may lead to systematic errors in the humidity profiles with implications in LST, particularly over mountainous areas. The present study compares LST estimated with three different retrieval algorithms: a radiative transfer-based physical mono-window (PMW), a statistical mono-window (SMW), and a generalized split-windows (GSW). The algorithms were tested over the Alpine region using ERA-Int reanalysis data and relied on the finer spatial scale Consortium for Small-Scale Modelling (COSMO) model data as a reference. Two methods were developed to correct ERA-Int water vapor misestimation: (1) an exponential parametrization of total precipitable water (TPW) appropriate for SMW/GSW; and (2) a level reduction method to be used in PMW. When ERA-Int TPW was used, the algorithm missed the right TPW class in 87% of the cases. When the exponential parametrization was used, the missing class rate decreased to 9%, and when the level reduction method was applied, the LST corrections went up to 1.7 K over the study region. Overall, the correction for pixel orography in TPW leads to corrections in LST estimations, which are relevant to ensure that long-term LST records meet climate requirements, particularly over mountainous regions.
引用
收藏
页数:13
相关论文
共 34 条
[1]   Operational Convective-Scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities [J].
Baldauf, Michael ;
Seifert, Axel ;
Foerstner, Jochen ;
Majewski, Detlev ;
Raschendorfer, Matthias ;
Reinhardt, Thorsten .
MONTHLY WEATHER REVIEW, 2011, 139 (12) :3887-3905
[2]   Mapping the atmospheric water vapor by integrating microwave radiometer and GPS measurements [J].
Basili, P ;
Bonafoni, S ;
Mattioli, V ;
Ciotti, P ;
Pierdicca, N .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08) :1657-1665
[3]   Variational estimation of soil and vegetation turbulent transfer and heat flux parameters from sequences of multisensor imagery [J].
Caparrini, F ;
Castelli, F ;
Entekhabi, D .
WATER RESOURCES RESEARCH, 2004, 40 (12) :1-15
[4]   Use of land surface temperature to estimate surface energy fluxes: Contributions of Wilfried Brutsaert and collaborators [J].
Crago, Richard D. ;
Qualls, Russell J. .
WATER RESOURCES RESEARCH, 2014, 50 (04) :3396-3408
[5]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[6]   MSG/SEVIRI cloud mask and type from SAFNWC [J].
Derrien, M ;
Le Gleau, H .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (21) :4707-4732
[7]   Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties [J].
Duguay-Tetzlaff, Anke ;
Bento, Virgilio A. ;
Goettsche, Frank M. ;
Stoeckli, Reto ;
Martins, Joao P. A. ;
Trigo, Isabel ;
Olesen, Folke ;
Bojanowski, Jedrzej S. ;
da Camara, Carlos ;
Kunz, Heike .
REMOTE SENSING, 2015, 7 (10) :13139-13156
[8]   Quantifying the Uncertainty of Land Surface Temperature Retrievals From SEVIRI/Meteosat [J].
Freitas, Sandra C. ;
Trigo, Isabel F. ;
Bioucas-Dias, Jose M. ;
Goettsche, Frank-M .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (01) :523-534
[9]   Assimilation of land surface temperature into the land surface model JULES with an ensemble Kalman filter [J].
Ghent, D. ;
Kaduk, J. ;
Remedios, J. ;
Ardo, J. ;
Balzter, H. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[10]   Daily minimum and maximum surface air temperatures from geostationary satellite data [J].
Good, Elizabeth .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (06) :2306-2324