Multiplicity of Periodic Solutions for a Higher Order Difference Equation

被引:2
作者
Hu, Ronghui [1 ]
机构
[1] Hunan Inst Engn, Coll Sci, Xiangtan 411104, Hunan, Peoples R China
关键词
SEMILINEAR ELLIPTIC-EQUATIONS; HAMILTONIAN-SYSTEMS; RESONANT PROBLEMS; EXISTENCE;
D O I
10.1155/2014/925290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a higher order difference equation. By Lyapunov-Schmidt reduction methods and computations of critical groups, we prove that the equation has four M-periodic solutions.
引用
收藏
页数:7
相关论文
共 25 条
[1]  
[Anonymous], 1986, Critical point theory and its applications
[2]   Existence of periodic solutions for a 2nth-order nonlinear difference equation [J].
Cai, Xiaochun ;
Yu, Jianshe .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) :870-878
[3]  
CASTRO A, 1982, LECT NOTES MATH, V957, P1
[4]  
Chang K.C., 1994, Topological Methods in Nonlinear Analysis, V3, P179, DOI [10.12775/TMNA.1994.008, DOI 10.12775/TMNA.1994.008]
[5]  
Chang K.-C., 1993, INFIN DIMENS ANAL QU, DOI DOI 10.1007/978-1-4612-0385-8
[6]   MORSE-TYPE INDEX THEORY FOR FLOWS AND PERIODIC-SOLUTIONS FOR HAMILTONIAN EQUATIONS [J].
CONLEY, C ;
ZEHNDER, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (02) :207-253
[7]   Doubly resonant semilinear elliptic problems via nonsmooth critical point theory [J].
Corvellec, J. -N. ;
Motreanu, V. V. ;
Saccon, C. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (08) :2064-2091
[8]  
Guo ZM, 2003, SCI CHINA SER A, V46, P506
[9]   COINCIDENCE DEGREE AND PERIODIC-SOLUTIONS OF NEUTRAL EQUATIONS [J].
HALE, JK ;
MAWHIN, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (02) :295-307
[10]   Existence of periodic solutions of a higher order difference system [J].
Hu, Ronghui ;
Huang, Lihong .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (02) :405-423