An extension of Chesneau's theorem

被引:11
作者
Kou, Junke [1 ]
Liu, Youming [1 ]
机构
[1] Beijing Univ Technol, Dept Appl Math, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Lower bound; Biased regression estimation; L-P risk; Wavelets; REGRESSION;
D O I
10.1016/j.spl.2015.09.018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers a lower bound estimation over L-P (R-d) (1 <= p < infinity) risk for d dimensional regression functions in Besov spaces based on biased data. We provide the best possible lower bound up to a Inn factor by using wavelet methods. When the weight function w(x, y) equivalent to 1 and d = 1, our result reduces to Chesneau's theorem, see Chesneau (2007). (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:23 / 32
页数:10
相关论文
共 11 条
[1]   Wavelet-based estimation of regression function for dependent biased data under a given random design [J].
Chaubey, Yogendra P. ;
Chesneau, Christophe ;
Shirazi, Esmaeil .
JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (01) :53-71
[2]   Regression with random design: A minimax study [J].
Chesneau, Christophe .
STATISTICS & PROBABILITY LETTERS, 2007, 77 (01) :40-53
[3]   Nonparametric Wavelet Regression Based on Biased Data [J].
Chesneau, Christophe ;
Shirazi, Esmaeil .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (13) :2642-2658
[4]   Confidence bands in nonparametric regression with length biased data [J].
Cristóbal, JA ;
Ojeda, JL ;
Alcalá, JT .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (03) :475-496
[5]   Approximation methods for supervised learning [J].
DeVore, R ;
Kerkyacharian, G ;
Picard, D ;
Temlyakov, V .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (01) :3-58
[6]  
Hardle W., 1997, WAVELETS APPROXIMATI
[7]  
Kou Junke, 2015, COMM STAT T IN PRESS
[8]  
MEYER Y, 1990, WAVELETS OPERATORS
[9]   Kernel regression in the presence of size-bias [J].
Sköld, M .
JOURNAL OF NONPARAMETRIC STATISTICS, 1999, 12 (01) :41-51
[10]  
Tsybakov AB, 2009, SPRINGER SER STAT, P1, DOI 10.1007/978-0-387-79052-7_1