A bioinspired flexible organic artificial afferent nerve

被引:1222
作者
Kim, Yeongin [1 ]
Chortos, Alex [2 ]
Xu, Wentao [3 ,4 ]
Liu, Yuxin [5 ]
Oh, Jin Young [6 ,7 ]
Son, Donghee [6 ]
Kang, Jiheong [6 ]
Foudeh, Amir M. [6 ]
Zhu, Chenxin [1 ]
Lee, Yeongjun [3 ]
Niu, Simiao [6 ]
Liu, Jia [6 ]
Pfattner, Raphael [6 ]
Bao, Zhenan [6 ]
Lee, Tae-Woo [3 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul, South Korea
[4] Nankai Univ, Inst Photoelect Thin Film Devices & Technol, Tianjin, Peoples R China
[5] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[7] Kyung Hee Univ, Dept Chem Engn, Yongin, South Korea
基金
新加坡国家研究基金会; 加拿大自然科学与工程研究理事会;
关键词
TACTILE; MECHANISM; NEURONS;
D O I
10.1126/science.aao0098
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The distributed network of receptors, neurons, and synapses in the somatosensory system efficiently processes complex tactile information. We used flexible organic electronics to mimic the functions of a sensory nerve. Our artificial afferent nerve collects pressure information (1 to 80 kilopascals) from clusters of pressure sensors, converts the pressure information into action potentials (0 to 100 hertz) by using ring oscillators, and integrates the action potentials from multiple ring oscillators with a synaptic transistor. Biomimetic hierarchical structures can detect movement of an object, combine simultaneous pressure inputs, and distinguish braille characters. Furthermore, we connected our artificial afferent nerve to motor nerves to construct a hybrid bioelectronic reflex arc to actuate muscles. Our system has potential applications in neurorobotics and neuroprosthetics.
引用
收藏
页码:998 / +
页数:6
相关论文
共 34 条
[1]   Synaptic dynamics in analog VLSI [J].
Bartolozzi, Chiara ;
Indiveri, Giacomo .
NEURAL COMPUTATION, 2007, 19 (10) :2581-2603
[2]  
Beer RD, 1997, COMMUN ACM, V40, P31
[3]   Integration of Sensory Quanta in Cuneate Nucleus Neurons In Vivo [J].
Bengtsson, Fredrik ;
Brasselet, Romain ;
Johansson, Roland S. ;
Arleo, Angelo ;
Jorntell, Henrik .
PLOS ONE, 2013, 8 (02)
[4]   Encoding/decoding of first and second order tactile afferents in a neurorobotic application [J].
Bologna, Luca Leonardo ;
Pinoteau, Jeremie ;
Brasselet, Romain ;
Maggiali, Marco ;
Arleo, Angelo .
JOURNAL OF PHYSIOLOGY-PARIS, 2011, 105 (1-3) :25-35
[5]  
Caviglia S., 2016, 2016 IEEE INT S CIRC
[6]  
Delbruck T., 2010, 2010 IEEE INT S CIRC
[7]   Large-scale neuromorphic computing systems [J].
Furber, Steve .
JOURNAL OF NEURAL ENGINEERING, 2016, 13 (05)
[8]   The SpiNNaker Project [J].
Furber, Steve B. ;
Galluppi, Francesco ;
Temple, Steve ;
Plana, Luis A. .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :652-665
[9]   Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots [J].
Goldschmidt, Dennis ;
Woergoetter, Florentin ;
Manoonpong, Poramate .
FRONTIERS IN NEUROROBOTICS, 2014, 8
[10]   Low-voltage polymer field-effect transistors gated via a proton conductor [J].
Herlogsson, Lars ;
Crispin, Xavier ;
Robinson, Nathaniel D. ;
Sandberg, Mats ;
Hagel, Olle-Jonny ;
Gustafsson, Goran ;
Berggren, Magnus .
ADVANCED MATERIALS, 2007, 19 (01) :97-+