On the Diophantine equation xm-1/x-1 = yn-1/y-1

被引:15
作者
Bugeaud, Y
Shorey, TN
机构
[1] Univ Strasbourg, UFR Math, F-67084 Strasbourg, France
[2] Tata Inst Fundamental Res, Sch Math, Mumbai 400005, India
关键词
D O I
10.2140/pjm.2002.207.61
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Diophantine equation x(m)-1/x-1 = y(n)-1/y-1 in integers x> 1, y> 1, m> 1, n> 1 with x not equal y. We show that, for given x and y, this equation has at most two solutions. Further, we prove that it has finitely many solutions (x, y, m, n) with m> 2 and n> 2 such that gcd( m - 1, n - 1) > 1 and (m - 1) / (n - 1) is bounded.
引用
收藏
页码:61 / 75
页数:15
相关论文
共 15 条
[1]  
BAKER A, 1967, PROC CAMB PHILOS S-M, V63, P693
[2]  
BAKER A, 1993, J REINE ANGEW MATH, V442, P19
[3]   ON THE EQUATION A(XM-1)-(X-1)=B(YN-1)-(Y-1) [J].
BALASUBRAMANIAN, R ;
SHOREY, TN .
MATHEMATICA SCANDINAVICA, 1980, 46 (02) :177-182
[4]   Linear forms in two m-adic logarithms and applications to Diophantine problems [J].
Bugeaud, Y .
COMPOSITIO MATHEMATICA, 2002, 132 (02) :137-158
[5]  
Bugeaud Y, 2001, J REINE ANGEW MATH, V539, P55
[6]   EQUATIONS OF FORM F(X)=G(Y) [J].
DAVENPORT, H ;
SCHINZEL, A ;
LEWIS, DJ .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :304-&
[7]  
GOORMAGHTIGH R, 1917, INTERMEDIAIRE MATH, V24, P88
[8]   Linear forms in two logarithms and interpolation determinants [J].
Laurent, M ;
Mignotte, M ;
Nesterenko, Y .
JOURNAL OF NUMBER THEORY, 1995, 55 (02) :285-321
[9]  
LE M, 1992, INDAG MATH, V3, P185
[10]  
MAKOWSKI M, 1959, MATHESIS, V68, P128