An Inverse Problem for an Integro-Differential Equation with a Convolution Kernel Dependent on the Spectral Parameter

被引:6
作者
Bondarenko, Natalia P. [1 ,2 ]
机构
[1] Samara Natl Res Univ, Dept Appl Math & Phys, Moskovskoye Shosse 34, Samara 443086, Russia
[2] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Astrakhanskaya 83, Saratov 410012, Russia
基金
俄罗斯科学基金会;
关键词
Pencil of integro-differential operators; inverse spectral problems; nonlinear integral equations; necessary and sufficient conditions; OPERATORS;
D O I
10.1007/s00025-019-1073-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a pencil of the first-order integro-differential operators with the convolution kernel dependent on the spectral parameter. The inverse problem is studied, which consists in recovering the kernel from the spectrum. We develop a constructive procedure for solution and obtain necessary and sufficient conditions for the solvability of the inverse problem.
引用
收藏
页数:10
相关论文
共 16 条
[1]  
[Anonymous], 1977, OPERATORYI SHTURMA L
[2]   An inverse spectral problem for integro-differential Dirac operators with general convolution kernels [J].
Bondarenko, Natalia ;
Buterin, Sergey .
APPLICABLE ANALYSIS, 2020, 99 (04) :700-716
[3]   On Recovering the Dirac Operator with an Integral Delay from the Spectrum [J].
Bondarenko, Natalia ;
Buterin, Sergey .
RESULTS IN MATHEMATICS, 2017, 71 (3-4) :1521-1529
[4]   On an inverse spectral problem for first-order integro-differential operators with discontinuities [J].
Buterin, S. A. .
APPLIED MATHEMATICS LETTERS, 2018, 78 :65-71
[5]   On inverse problem for a convolution integro-differential operator with Robin boundary conditions [J].
Buterin, S. A. ;
Choque Rivero, A. E. .
APPLIED MATHEMATICS LETTERS, 2015, 48 :150-155
[6]   On Global Solvability and Uniform Stability of One Nonlinear Integral Equation [J].
Buterin, Sergey ;
Malyugina, Margarita .
RESULTS IN MATHEMATICS, 2018, 73 (03)
[7]   On an inverse spectral problem for a convolution integro-differential operator [J].
Buterin, Sergey Alexandrovich .
RESULTS IN MATHEMATICS, 2007, 50 (3-4) :173-181
[8]  
FREILING G., 2001, Inverse Sturm-Liouville Problems and Their Applications
[9]   On an Inverse Spectral Problem for the Convolution Integro-Differential Operator of Fractional Order [J].
Ignatyev, Mikhail .
RESULTS IN MATHEMATICS, 2018, 73 (01)
[10]   AN INVERSE SPECTRAL PROBLEM FOR DIFFERENTIAL OPERATORS WITH INTEGRAL DELAY [J].
Kuryshova, Yu. .
TAMKANG JOURNAL OF MATHEMATICS, 2011, 42 (03) :295-303