Cavity-Enhanced Room-Temperature Broadband Raman Memory

被引:78
作者
Saunders, D. J. [1 ]
Munns, J. H. D. [1 ,2 ]
Champion, T. F. M. [1 ]
Qiu, C. [1 ,3 ]
Kaczmarek, K. T. [1 ]
Poem, E. [1 ]
Ledingham, P. M. [1 ]
Walmsley, I. A. [1 ]
Nunn, J. [1 ]
机构
[1] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
[3] E China Normal Univ, Dept Phys, Quantum Inst Light & Atoms, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
QUANTUM MEMORY; EFFICIENT;
D O I
10.1103/PhysRevLett.116.090501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Broadband quantum memories hold great promise as multiplexing elements in future photonic quantum information protocols. Alkali-vapor Raman memories combine high-bandwidth storage, on-demand readout, and operation at room temperature without collisional fluorescence noise. However, previous implementations have required large control pulse energies and have suffered from four-wave-mixing noise. Here, we present a Raman memory where the storage interaction is enhanced by a low-finesse birefringent cavity tuned into simultaneous resonance with the signal and control fields, dramatically reducing the energy required to drive the memory. By engineering antiresonance for the anti-Stokes field, we also suppress the four-wave-mixing noise and report the lowest unconditional noise floor yet achieved in a Raman-type warm vapor memory, (15 +/- 2) x 10(-3) photons per pulse, with a total efficiency of (9.5 +/- 0.5)%.
引用
收藏
页数:5
相关论文
共 40 条
  • [1] Aaronson S, 2011, ACM S THEORY COMPUT, P333
  • [2] Albert M, 2011, NAT PHOTONICS, V5, P633, DOI [10.1038/NPHOTON.2011.214, 10.1038/nphoton.2011.214]
  • [3] Efficient and long-lived quantum memory with cold atoms inside a ring cavity
    Bao, Xiao-Hui
    Reingruber, Andreas
    Dietrich, Peter
    Rui, Jun
    Dueck, Alexander
    Strassel, Thorsten
    Li, Li
    Liu, Nai-Le
    Zhao, Bo
    Pan, Jian-Wei
    [J]. NATURE PHYSICS, 2012, 8 (07) : 517 - 521
  • [4] Borregaard J., ARXIV150103916
  • [5] Toward Quantum Processing in Molecules: ATHz-Bandwidth Coherent Memory for Light
    Bustard, Philip J.
    Lausten, Rune
    England, Duncan G.
    Sussman, Benjamin J.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (08)
  • [6] Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay
    Chen, Yi-Hsin
    Lee, Meng-Jung
    Wang, I-Chung
    Du, Shengwang
    Chen, Yong-Fan
    Chen, Ying-Cheng
    Yu, Ite A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (08)
  • [7] Hamiltonian design in readout from room-temperature Raman atomic memory
    Dabrowski, Michal
    Chrapkiewicz, Radoslaw
    Wasilewski, Wojciech
    [J]. OPTICS EXPRESS, 2014, 22 (21): : 26076 - 26090
  • [8] Atomic quantum memory: Cavity versus single-pass schemes
    Dantan, A
    Bramati, A
    Pinard, M
    [J]. PHYSICAL REVIEW A, 2005, 71 (04):
  • [9] Ding DS, 2015, NAT PHOTONICS, V9, P332, DOI [10.1038/NPHOTON.2015.43, 10.1038/nphoton.2015.43]
  • [10] Light storage on the time scale of a minute
    Dudin, Y. O.
    Li, L.
    Kuzmich, A.
    [J]. PHYSICAL REVIEW A, 2013, 87 (03):