Parametric estimation for cusp-type signal driven by fractional Brownian motion

被引:3
作者
Mishra, M. N. [1 ]
Rao, B. L. S. Prakasa [2 ]
机构
[1] Inst Math & Its Applicat, Bhubaneswar, Odisha, India
[2] CR Rao Adv Inst Math Stat & Comp Sci, Hyderabad, Telangana, India
关键词
Stochastic differential equation; Cusp-type signal; fractional Brownian motion; psuedo likelihood estimation; maximum likelihood estimation;
D O I
10.1080/07362994.2019.1646140
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the asymptotic properties of the maximum likelihood estimator of the drift parameter in a cusp-type signal driven by a fractional Brownian motion.
引用
收藏
页码:62 / 75
页数:14
相关论文
共 17 条
[1]  
Billingsley P., 2013, CONVERGE PROBAB MEAS
[2]   On parameter estimation for cusp-type signals [J].
Chernoyarov, O. V. ;
Dachian, S. ;
Kutoyants, Yu. A. .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2018, 70 (01) :39-62
[3]  
IBRAGIMOV I., 1981, Statistical estimation: asymptotic theory, Stochastic Modelling and Applied Probability
[4]   Parameter Estimation and Optimal Filtering for Fractional Type Stochastic Systems [J].
M.L. Kleptsyna ;
A. Le Breton ;
M.-C. Roubaud .
Statistical Inference for Stochastic Processes, 2000, 3 (1-2) :173-182
[5]   Estimation of change point for switching fractional diffusion processes [J].
Mishra, M. N. ;
Rao, B. L. S. Prakasa .
STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2014, 86 (03) :429-449
[6]  
Mishura Y., 2008, STOCHASTIC CALCULUS
[7]   An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions [J].
Norros, I ;
Valkeila, E ;
Virtamo, J .
BERNOULLI, 1999, 5 (04) :571-587
[8]  
Parthasarathy K.R., 1967, PROBABILITY MEASURES
[9]  
Prakasa Rao B. L. S., 1966, THESIS
[10]  
Prakasa Rao B. L. S., 1999, Statistical Inference for Diffusion Type Processes