Dealing with Observation Outages within Navigation Data using Gaussian Process Regression

被引:9
作者
Chen, Hongmei [1 ,2 ,3 ]
Cheng, Xianghong [1 ,2 ]
Wang, Haipeng [1 ,2 ]
Han, Xu [1 ,2 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, Nanjing, Jiangsu, Peoples R China
[2] Key Lab Microinertial Instrument & Adv Nav, Suzhou, Peoples R China
[3] Luoyang Inst Sci & Technol, Luoyang, Peoples R China
基金
美国国家科学基金会;
关键词
Sparse-grid quadrature Kalman filter (SGQKF); Gaussian process regression; Uncertain observations; Integrated navigation systems; KALMAN FILTER;
D O I
10.1017/S0373463314000010
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Gaussian process regression (GPR) is used in a Spare-grid Quadrature Kalman filter (SGQKF) for Strap-down Inertial Navigation System (SINS)/odometer integrated navigation to bridge uncertain observation outages and maintain an estimate of the evolving SINS biases. The SGQKF uses nonlinearized dynamic models with complex stochastic nonlinearities so the performance degrades significantly during observation outages owing to the uncertainties and noise. The GPR calculates the residual output after factoring in the contributions of the parametric model that is used as a nonlinear SINS error predictor integrated into the SGQKF. The sensor measurements and SINS output deviations from the odometer are collected in a data set during observation availability. The GPR is then applied to predict SINS deviations from the odometer and then the predicted SINS deviations are fed to the SGQKF as an actual update to estimate all SINS biases during observation outages. We demonstrate our method's effectiveness in bridging uncertain observation outages in simulations and in real road tests. The results agree with the theoretical analysis, which demonstrate that SGQKF using GPR can maintain an estimate of the evolving SINS biases during signal outages.
引用
收藏
页码:603 / 615
页数:13
相关论文
共 21 条
[1]   Adaptive fuzzy prediction of low-cost inertial-based positioning errors [J].
Abdel-Hamid, Walid ;
Noureldin, Aboelmagd ;
El-Sheimy, Naser .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (03) :519-529
[2]  
Asheri H., 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P4541, DOI 10.1109/ICPR.2010.1103
[3]  
Atia MM, 2012, P INT TECH M I NAVIG, P1148
[4]   Adaptive sparse grid quadrature filter for spacecraft relative navigation [J].
Baek, Kwangyul ;
Bang, Hyochoong .
ACTA ASTRONAUTICA, 2013, 87 :96-106
[5]  
Cheng XH, 2013, IEEE IMTC P, P1396
[6]   Low-Cost Three-Dimensional Navigation Solution for RISS/GPS Integration Using Mixture Particle Filter [J].
Georgy, Jacques ;
Noureldin, Aboelmagd ;
Korenberg, Michael J. ;
Bayoumi, Mohamed M. .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2010, 59 (02) :599-615
[7]   Nonlinear estimation applying an unscented transformation in systems with correlated uncertain observations [J].
Hermoso-Carazo, A. ;
Linares-Perez, J. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) :7998-8009
[8]  
Jia B., 2010, J GUIDANCE CONTROL D, V27, P367
[9]   Sparse-grid quadrature nonlinear filtering [J].
Jia, Bin ;
Xin, Ming ;
Cheng, Yang .
AUTOMATICA, 2012, 48 (02) :327-341
[10]  
Ko J, 2007, 2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, P1907