Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem

被引:27
作者
Xu, Xiao-Chuan [1 ]
Yang, Chuan-Fu [2 ]
Buterin, Sergey A. [3 ]
Yurko, Vjacheslav A. [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
[3] Saratov NG Chernyshevskii State Univ, Dept Math, Astrakhanskaya 83, Saratov 410012, Russia
基金
中国国家自然科学基金;
关键词
transmission eigenvalue problem; scattering theory; complex eigenvalue; inverse spectral problem; PARTIAL INFORMATION; UNIQUENESS;
D O I
10.14232/ejqtde.2019.1.38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with the interior transmission eigenvalue problem: y '' + k(2)eta (r) y = 0 with boundary conditions y (0) = 0 = y'(1) sin k/k - y (1) cos k, where the function eta(r) is positive. We obtain the asymptotic distribution of non-real transmission eigenvalues under the suitable assumption on the square of the index of refraction eta(r). Moreover, we provide a uniqueness theorem for the case integral(1)(0) root eta(r)dr > 1, by using all transmission eigenvalues (including their multiplicities) along with a partial information of eta(r) on the subinterval. The relationship between the proportion of the needed transmission eigenvalues and the length of the subinterval on the given eta(r) is also obtained.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 26 条
[11]  
Fedoryuk M. V., 1987, ASYMPTOTICS INTEGRAL
[12]   Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum [J].
Gesztesy, F ;
Simon, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (06) :2765-2787
[13]   On the inverse spectral theory of Schrodinger and Dirac operators [J].
Horváth, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (10) :4155-4171
[14]  
Iacob A., 1986, Operator Theory: Advances and Applications, V22, DOI [10.1007/978-3-0348-5485-6, DOI 10.1007/978-3-0348-5485-6]
[15]  
Levin B., 1964, TRANSLATIONS MATH MO, V5
[16]   ON THE UNIQUENESS OF A SPHERICALLY SYMMETRICAL SPEED OF SOUND FROM TRANSMISSION EIGENVALUES [J].
MCLAUGHLIN, JR ;
POLYAKOV, PL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (02) :351-382
[17]  
Poschel J., 1987, PURE APPL MATH, V130
[18]  
Ramm, 2000, AM MATH SOC, V25, P15
[19]  
Stepin S.A., 2007, MAT SBORNIK, V198, P87
[20]   The inverse interior transmission eigenvalue problem with mixed spectral data [J].
Wang, Yu Ping ;
Shieh, Chung Tsun .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 343 :285-298