Estimates of complex eigenvalues and an inverse spectral problem for the transmission eigenvalue problem

被引:27
作者
Xu, Xiao-Chuan [1 ]
Yang, Chuan-Fu [2 ]
Buterin, Sergey A. [3 ]
Yurko, Vjacheslav A. [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Sci, Nanjing 210094, Jiangsu, Peoples R China
[3] Saratov NG Chernyshevskii State Univ, Dept Math, Astrakhanskaya 83, Saratov 410012, Russia
基金
中国国家自然科学基金;
关键词
transmission eigenvalue problem; scattering theory; complex eigenvalue; inverse spectral problem; PARTIAL INFORMATION; UNIQUENESS;
D O I
10.14232/ejqtde.2019.1.38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work deals with the interior transmission eigenvalue problem: y '' + k(2)eta (r) y = 0 with boundary conditions y (0) = 0 = y'(1) sin k/k - y (1) cos k, where the function eta(r) is positive. We obtain the asymptotic distribution of non-real transmission eigenvalues under the suitable assumption on the square of the index of refraction eta(r). Moreover, we provide a uniqueness theorem for the case integral(1)(0) root eta(r)dr > 1, by using all transmission eigenvalues (including their multiplicities) along with a partial information of eta(r) on the subinterval. The relationship between the proportion of the needed transmission eigenvalues and the length of the subinterval on the given eta(r) is also obtained.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 26 条
[1]   Reconstruction of the wave speed from transmission eigenvalues for the spherically symmetric variable-speed wave equation [J].
Aktosun, Tuncay ;
Papanicolaou, Vassilis G. .
INVERSE PROBLEMS, 2013, 29 (06)
[2]   The uniqueness in the inverse problem for transmission eigenvalues for the spherically symmetric variable-speed wave equation [J].
Aktosun, Tuncay ;
Gintides, Drossos ;
Papanicolaou, Vassilis G. .
INVERSE PROBLEMS, 2011, 27 (11)
[3]   On a local solvability and stability of the inverse transmission eigenvalue problem [J].
Bondarenko, Natalia ;
Buterin, Sergey .
INVERSE PROBLEMS, 2017, 33 (11)
[4]   On an Inverse Transmission Problem From Complex Eigenvalues [J].
Buterin, S. A. ;
Yang, C. -F. .
RESULTS IN MATHEMATICS, 2017, 71 (3-4) :859-866
[5]   On an open question in the inverse transmission eigenvalue problem [J].
Buterin, S. A. ;
Yang, C-F ;
Yurko, V. A. .
INVERSE PROBLEMS, 2015, 31 (04)
[7]   The existence of complex transmission eigenvalues for spherically stratified media [J].
Colton, David ;
Leung, Yuk-J. .
APPLICABLE ANALYSIS, 2017, 96 (01) :39-47
[8]   Distribution of complex transmission eigenvalues for spherically stratified media [J].
Colton, David ;
Leung, Yuk-J ;
Meng, Shixu .
INVERSE PROBLEMS, 2015, 31 (03)
[9]   Complex eigenvalues and the inverse spectral problem for transmission eigenvalues [J].
Colton, David ;
Leung, Yuk-J .
INVERSE PROBLEMS, 2013, 29 (10)
[10]   Inverse spectral analysis with partial information on the potential .3. Updating boundary conditions [J].
delRio, R ;
Gesztesy, F ;
Simon, B .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1997, 1997 (15) :751-758