A BOUNDARY AND FINITE ELEMENT COUPLING FOR A MAGNETICALLY NONLINEAR EDDY CURRENT PROBLEM

被引:4
作者
Acevedo, Ramiro [1 ]
Alvarez, Edgardo [2 ]
Navia, Paulo [1 ]
机构
[1] Univ Cauca, Dept Matemat, Calle 5 5-70, Popayan, Cauca, Colombia
[2] Univ Norte, Dept Matemat & Estadist, Barranquilla, Colombia
来源
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS | 2020年 / 52卷
关键词
Time-dependent electromagnetic; eddy current model; nonlinear problems; boundary element method; finite element method; MODEL; FEM; FORMULATION; DOMAIN;
D O I
10.1553/etna_vol52s230
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to provide a mathematical and numerical analysis for a FEM-BEM coupling approximation of a magnetically nonlinear eddy current formulation by using FEM only on the conducting domain, and by imposing the integral conditions on its boundary. The nonlinear relationship between flux density and the magnetic field intensity is given by a physical parameter called magnetic reluctivity, which is assumed to depend on the Euclidean norm of the magnetic induction in the conducting domain. We use the nonlinear monotone operator theory for parabolic equations to show that the continuous formulation obtained for the coupling is a well-posed problem. Furthermore, we use Nedelec edge elements, standard nodal finite elements, and a backward-Euler time scheme, to obtain a fully discrete formulation and to prove quasi-optimal error estimates.
引用
收藏
页码:230 / 248
页数:19
相关论文
共 29 条
[1]   An E-based mixed FEM and BEM coupling for a time-dependent eddy current problem [J].
Acevedo, Ramiro ;
Meddahi, Salim .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (02) :667-697
[2]   AN E-BASED MIXED FORMULATION FOR A TIME-DEPENDENT EDDY CURRENT PROBLEM [J].
Acevedo, Ramiro ;
Meddahi, Salim ;
Rodriguez, Rodolfo .
MATHEMATICS OF COMPUTATION, 2009, 78 (268) :1929-1949
[3]   An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations [J].
Alonso, A ;
Valli, A .
MATHEMATICS OF COMPUTATION, 1999, 68 (226) :607-631
[4]  
ALONSO-RODRIGUEZ A., 2010, EDDY CURRENT APPROXI
[5]   A justification of eddy currents model for the Maxwell equations [J].
Ammari, H ;
Buffa, A ;
Nédélec, JC .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (05) :1805-1823
[6]  
Amrouche C, 1998, MATH METHOD APPL SCI, V21, P823, DOI 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO
[7]  
2-B
[8]   Numerical analysis of nonlinear multiharmonic eddy current problems [J].
Bachinger, F ;
Langer, U ;
Schöberl, J .
NUMERISCHE MATHEMATIK, 2005, 100 (04) :593-616
[9]   Numerical solution of transient eddy current problems with input current intensities as boundary data [J].
Bermudez, Alfredo ;
Lopez-Rodriguez, Bibiana ;
Rodriguez, Rodolfo ;
Salgado, Pilar .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (03) :1001-1029
[10]   Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications [J].
Biro, Oszkar ;
Koczka, Gergely ;
Preis, Kurt .
APPLIED NUMERICAL MATHEMATICS, 2014, 79 :3-17