Bayesian Lasso-mixed quantile regression

被引:23
作者
Alhamzawi, Rahim [1 ]
Yu, Keming [1 ]
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
关键词
asymmetric Laplace distribution; Gibbs sampler; random effects; longitudinal data; quantile regression; SELECTION;
D O I
10.1080/00949655.2012.731689
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we discuss the regularization in linear-mixed quantile regression. A hierarchical Bayesian model is used to shrink the fixed and random effects towards the common population values by introducing an l(1) penalty in the mixed quantile regression check function. A Gibbs sampler is developed to simulate the parameters from the posterior distributions. Through simulation studies and analysis of an age-related macular degeneration (ARMD) data, we assess the performance of the proposed method. The simulation studies and the ARMD data analysis indicate that the proposed method performs well in comparison with the other approaches.
引用
收藏
页码:868 / 880
页数:13
相关论文
共 30 条
[1]  
Akaike H., 1998, Selected papers of Hirotugu Akaike, P199, DOI DOI 10.1007/978-1-4612-1694-0_15
[2]  
Alhamzawi R., 2012, COMPUT STAT IN PRESS
[3]   Bayesian adaptive Lasso quantile regression [J].
Alhamzawi, Rahim ;
Yu, Keming ;
Benoit, Dries F. .
STATISTICAL MODELLING, 2012, 12 (03) :279-297
[4]  
ANDREWS DF, 1974, J ROY STAT SOC B MET, V36, P99
[5]  
[Anonymous], 2005, vioplot: violin plot
[6]  
Bob W., 2009, SUPPDISTS SUPPLEMENT
[7]   Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models [J].
Bondell, Howard D. ;
Krishna, Arun ;
Ghosh, Sujit K. .
BIOMETRICS, 2010, 66 (04) :1069-1077
[8]   Penalized composite quasi-likelihood for ultrahigh dimensional variable selection [J].
Bradic, Jelena ;
Fan, Jianqing ;
Wang, Weiwei .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 :325-349
[9]  
Chaili P.X., 2008, THESIS U MANCHESTER
[10]   Random effects selection in linear mixed models [J].
Chen, Z ;
Dunson, DB .
BIOMETRICS, 2003, 59 (04) :762-769