Novikov structures on solvable Lie algebras

被引:27
作者
Burde, Dietrich
Dekimpe, Karel
机构
[1] Univ Vienna, Fak Math, A-1090 Vienna, Austria
[2] Katholieke Univ Leuven, B-8500 Kortrijk, Belgium
关键词
Novikov algebra; Yang-Baxter equation; classical r-matrix; Lie algebra extensions; Lie algebra cohomology;
D O I
10.1016/j.geomphys.2005.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Novikov algebras and Novikov structures on finite-dimensional Lie algebras. We show that a Lie algebra admitting a Novikov structure must be solvable. Conversely we present an example of a nilpotent two-step solvable Lie algebra without any Novikov structure. We construct Novikov structures on certain Lie algebras via classical r-matfices and via extensions. In the latter case we lift Novikov structures on an abelian Lie algebra a and a Lie algebra b to certain extensions of b by a. We apply this to prove the existence of affine and Novikov structures on several classes of two-step solvable Lie algebras. In particular we generalize a well known result of Scheuneman concerning affine structures on three-step nilpotent Lie algebras. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1837 / 1855
页数:19
相关论文
共 13 条
[1]  
BAKALOV B, 2003, IMRN, V3, P123
[2]  
Balinsky A.A., 1985, SOV MATH DOKL, V32, P228
[3]  
BENOIST Y, 1995, J DIFFER GEOM, V41, P21
[4]   Affine structures on nilmanifolds [J].
Burde, D .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (05) :599-616
[5]   Simple left-symmetric algebras with solvable Lie algebra [J].
Burde D. .
manuscripta mathematica, 1998, 95 (3) :397-411
[6]   Solvable Lie algebras, Lie groups and polynomial structures [J].
Dekimpe, K .
COMPOSITIO MATHEMATICA, 2000, 121 (02) :183-204
[7]   Chiral deformations of conformal field theories [J].
Dijkgraaf, R .
NUCLEAR PHYSICS B, 1997, 493 (03) :588-612
[8]  
FRENKEL I, 1993, MEM AM MATH SOC, V494, P1
[9]  
Gel'fand I., 1979, FUNCT ANAL APPL, V13, P13, DOI 10.1007/BF01078363
[10]   AFFINE STRUCTURES ON 3-STEP NILPOTENT LIE-ALGEBRAS [J].
SCHEUNEM.J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 46 (03) :451-454