The q-ary image of some qm-ary cyclic codes:: Permutation group and soft-decision decoding

被引:9
作者
Lacan, J [1 ]
Delpeyroux, E
机构
[1] ENSICA, Dept Math Appl & Informat, F-31056 Toulouse, France
[2] ICAM, Dept Informat, F-31300 Toulouse, France
关键词
permutation groups; q-ary image of q(m)-ary cyclic codes; soft-decision decoding;
D O I
10.1109/TIT.2002.1013146
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using a particular construction of generator matrices of the q-ary image of q(m)-ary cyclic codes, it is proved that some of these codes are invariant under the action of particular permutation groups. The equivalence of such codes with some two-dimensional (2-D) Abelian codes and cyclic codes is deduced from this property. These permutations are also used in the area of the soft-decision decoding of some expanded Reed-Solomon (RS) codes to improve the performance of generalized minimum-distance decoding.
引用
收藏
页码:2069 / 2078
页数:10
相关论文
共 17 条
[1]  
[Anonymous], 1983, THEORY ERROR CORRECT
[2]   The permutation group of affine-invariant extended cyclic codes [J].
Berger, TP ;
Charpin, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (06) :2194-2209
[3]   THE APPLICATION OF ERROR CONTROL TO COMMUNICATIONS [J].
BERLEKAMP, ER ;
PEILE, RE ;
POPE, SP .
IEEE COMMUNICATIONS MAGAZINE, 1987, 25 (04) :44-57
[5]   CYCLIC CODES THAT ARE INVARIANT UNDER GENERAL LINEAR GROUP [J].
DELSARTE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (06) :760-+
[6]   GENERALIZED MINIMUM DISTANCE DECODING [J].
FORNEY, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1966, 12 (02) :125-+
[7]   POLYNOMIAL CODES [J].
KASAMI, T ;
LIN, S ;
PETERSON, WW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (06) :807-+
[8]   Fast generalized minimum-distance decoding of algebraic-geometry and Reed-Solomon codes [J].
Kotter, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (03) :721-737
[9]  
LACAN J, 1999, CONT MATH, V225
[10]  
Lidl R., 1983, FINITE FIELDS