Wavelet-based detection of outliers in time series

被引:38
作者
Bilen, C [1 ]
Huzurbazar, S
机构
[1] N Dakota State Univ, Dept Ind & Mfg Engn, Fargo, ND 58105 USA
[2] Univ Wyoming, Dept Stat, Laramie, WY 82071 USA
基金
美国国家科学基金会;
关键词
additive outlier; innovational outlier;
D O I
10.1198/106186002760180536
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article considers the problem of detecting outliers in time series data and proposes a general detection method based on wavelets. Unlike other detection procedures found in the literature, our method does not require that a model be specified for the data. Also, use of our method is not restricted to data generated from ARIMA processes, The effectiveness of the proposed method is compared with existing outlier detection procedures. Comparisons based on various models, sample sizes, and parameter values illustrate the effectiveness of the proposed method.
引用
收藏
页码:311 / 327
页数:17
相关论文
共 25 条
[1]  
[Anonymous], 1997, ESSENTIAL WAVELETS S, DOI DOI 10.1007/978-1-4612-0709-2
[2]  
BILEN C, 1998, THESIS U WYOMING LAR
[3]  
BRUCE A, 1995, 38 STAT DIV
[4]  
Chang I, 1983, 8 U CHIC STAT RES CT
[5]  
CHANG M, 1988, SOLID STATE TECHNOL, V31, P193
[6]   FORECASTING TIME-SERIES WITH OUTLIERS [J].
CHEN, C ;
LIU, LM .
JOURNAL OF FORECASTING, 1993, 12 (01) :13-35
[7]  
Chui C. K., 1992, An introduction to wavelets, V1
[8]  
COHEN A, 1993, CR ACAD SCI I-MATH, V316, P417
[9]  
Daubechies I., 1993, Ten Lectures of Wavelets, V28, P350
[10]   ON THE CORRELATION STRUCTURE OF THE WAVELET COEFFICIENTS OF FRACTIONAL BROWNIAN-MOTION [J].
DIJKERMAN, RW ;
MAZUMDAR, RR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (05) :1609-1612