Microtubule-active agents modify nitric oxide production in pulmonary artery endothelial cells

被引:29
作者
Su, YC
Zharikov, SI
Block, ER
机构
[1] Vet Affairs Med Ctr, Res Serv, Gainesville, FL 32608 USA
[2] Univ Florida, Coll Med, Dept Med, Gainesville, FL 32608 USA
关键词
lung; endothelium; nitric oxide synthase; heat shock protein 90;
D O I
10.1152/ajplung.00388.2001
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The effects of specific microtubule-active agents on nitric oxide (NO) production were examined in pulmonary artery endothelial cells (PAEC). PAEC were incubated with taxol, which stabilizes microtubules, or nocodazole, which disrupts microtubules, or both for 2-4 h. We then examined NO production, endothelial NO synthase (eNOS) activity, and eNOS association with heat shock protein (HSP) 90. Incubation of PAEC with taxol (15 muM) for 2-4 h resulted in an increase in NO production, eNOS activity, and the amount of HSP90 binding to eNOS. Incubation of PAEC with nocodazole (50 muM) for 2-4 h induced a decrease in NO production, eNOS activity, and the amount of HSP90 binding to eNOS. The presence of taxol in the culture medium prevented the effects of nocodazole on NO production and eNOS activity in PAEC. Geldanamycin, a HSP90 inhibitor, prevented the taxol-induced increase in eNOS activity. Taxol and nocodazole did not affect eNOS, HSP90, and tubulin protein contents in PAEC, as detected using Western blot analysis. These results indicate that the polymerization state of the microtubule cytoskeleton regulates NO production and eNOS activity in PAEC. The changes in eNOS activity induced by modification of microtubules are due, at least in part, to the altered binding of HSP90 to eNOS protein.
引用
收藏
页码:L1183 / L1189
页数:7
相关论文
共 33 条
[1]   LOSS OF ENDOTHELIUM-DEPENDENT RELAXANT ACTIVITY IN THE PULMONARY CIRCULATION OF RATS EXPOSED TO CHRONIC HYPOXIA [J].
ADNOT, S ;
RAFFESTIN, B ;
EDDAHIBI, S ;
BRAQUET, P ;
CHABRIER, PE .
JOURNAL OF CLINICAL INVESTIGATION, 1991, 87 (01) :155-162
[2]  
BREDT DS, 1992, J BIOL CHEM, V267, P10976
[3]   Direct interaction between endothelial nitric-oxide synthase and dynamin-2 - Implications for nitric-oxide synthase function [J].
Cao, S ;
Yao, J ;
McCabe, TJ ;
Yao, Q ;
Katusic, ZS ;
Sessa, WC ;
Shah, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (17) :14249-14256
[4]  
CARRAWAY KL, 1998, SIGNALING CYTOSKELET, P1
[5]   Endogenous nitric oxide in patients with stable COPD: correlates with severity of disease [J].
Clini, E ;
Bianchi, L ;
Pagani, M ;
Ambrosino, N .
THORAX, 1998, 53 (10) :881-883
[6]   CAVEOLIN CYCLES BETWEEN PLASMA-MEMBRANE CAVEOLAE AND THE GOLGI-COMPLEX BY MICROTUBULE-DEPENDENT AND MICROTUBULE-INDEPENDENT STEPS [J].
CONRAD, PA ;
SMART, EJ ;
YING, YS ;
ANDERSON, RGW ;
BLOOM, GS .
JOURNAL OF CELL BIOLOGY, 1995, 131 (06) :1421-1433
[7]   SHEAR-STRESS INDUCES CHANGES IN THE MORPHOLOGY AND CYTOSKELETON ORGANIZATION OF ARTERIAL ENDOTHELIAL-CELLS [J].
CUCINA, A ;
STERPETTI, AV ;
PUPELIS, G ;
FRAGALE, A ;
LEPIDI, S ;
CAVALLARO, A ;
GIUSTINIANI, Q ;
DANGELO, LS .
EUROPEAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY, 1995, 9 (01) :86-92
[8]  
Czar MJ, 1996, EUR J CELL BIOL, V70, P322
[9]   Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation [J].
Dimmeler, S ;
Fleming, I ;
Fisslthaler, B ;
Hermann, C ;
Busse, R ;
Zeiher, AM .
NATURE, 1999, 399 (6736) :601-605
[10]   Dynamic activation of endothelial nitric oxide synthase by Hsp90 [J].
García-Cardeña, G ;
Fan, R ;
Shah, V ;
Sorrentino, R ;
Cirino, G ;
Papapetropoulos, A ;
Sessa, WC .
NATURE, 1998, 392 (6678) :821-824