One-dimensional k-center on uncertain data

被引:18
作者
Wang, Haitao [1 ]
Zhang, Jingru [1 ]
机构
[1] Utah State Univ, Dept Comp Sci, Logan, UT 84322 USA
基金
美国国家科学基金会;
关键词
Facility locations; k-center; Uncertain data; Algorithms and data structures; Computational geometry; OPTIMAL SLOPE SELECTION; FACILITY LOCATION; PARAMETRIC SEARCH; ALGORITHMS; COMPLEXITY; OPTIMIZATION; PATH;
D O I
10.1016/j.tcs.2015.08.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Problems on uncertain data have attracted significant attention due to the imprecise nature of many measurement data. In this paper, we consider the k-center problem on one-dimensional uncertain data. The input is a set of (weighted) uncertain points on a real line, and each uncertain point is specified by its probability density function (pdf) which is a piecewise-uniform function (i.e., a histogram). The goal is to find a set Q of k points on the line to minimize the maximum expected distance from the uncertain points of P to their expected closest points in Q. We present efficient algorithms for this uncertain k-center problem and their running times almost match those for the "deterministic" k-center problem. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:114 / 124
页数:11
相关论文
共 39 条
  • [1] Agarwal P., 2012, Proceedings of the 31st ACM Symposium on Principles of Database Systems (PODS), P225, DOI 10.1145/2213556.2213588
  • [2] Indexing Uncertain Data
    Agarwal, Pankaj K.
    Cheng, Siu-Wing
    Tao, Yufei
    Yi, Ke
    [J]. PODS'09: PROCEEDINGS OF THE TWENTY-EIGHTH ACM SIGMOD-SIGACT-SIGART SYMPOSIUM ON PRINCIPLES OF DATABASE SYSTEMS, 2009, : 137 - 146
  • [3] Aggarwal CC, 2008, PROC INT CONF DATA, P150, DOI 10.1109/ICDE.2008.4497423
  • [4] Local search heuristics for k-median and facility location problems
    Arya, V
    Garg, N
    Khandekar, R
    Meyerson, A
    Munagala, K
    Pandit, V
    [J]. SIAM JOURNAL ON COMPUTING, 2004, 33 (03) : 544 - 562
  • [5] Averbakh I., 2005, Discrete Optimizatiion, V2, P3, DOI DOI 10.1016/J.DIS0PT.2004.12.001
  • [6] Badoiu M., 2002, Proc. 34th ACM Symposium on Theory of Computing STOC'02, P250, DOI [DOI 10.1145/509907.509947, 10.1145/509907.509947]
  • [7] THE ALGEBRAIC DEGREE OF GEOMETRIC OPTIMIZATION PROBLEMS
    BAJAJ, C
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (02) : 177 - 191
  • [8] Optimal slope selection via cuttings
    Bronnimann, H
    Chazelle, B
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 10 (01): : 23 - 29
  • [9] ALGEBRAIC OPTIMIZATION - THE FERMAT-WEBER LOCATION PROBLEM
    CHANDRASEKARAN, R
    TAMIR, A
    [J]. MATHEMATICAL PROGRAMMING, 1990, 46 (02) : 219 - 224
  • [10] POLYNOMIALLY BOUNDED ALGORITHMS FOR LOCATING P-CENTERS ON A TREE
    CHANDRASEKARAN, R
    TAMIR, A
    [J]. MATHEMATICAL PROGRAMMING, 1982, 22 (03) : 304 - 315