End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography

被引:1255
作者
Ardila, Diego [1 ]
Kiraly, Atilla P. [1 ]
Bharadwaj, Sujeeth [1 ]
Choi, Bokyung [1 ]
Reicher, Joshua J. [2 ,3 ]
Peng, Lily [1 ]
Tse, Daniel [1 ]
Etemadi, Mozziyar [4 ]
Ye, Wenxing [1 ]
Corrado, Greg [1 ]
Naidich, David P. [5 ]
Shetty, Shravya [1 ]
机构
[1] Google AI, Mountain View, CA 94043 USA
[2] Stanford Hlth Care, Palo Alto, CA USA
[3] Palo Alto Vet Affairs, Palo Alto, CA USA
[4] Northwestern Med, Chicago, IL USA
[5] NYU, Ctr Biol Imaging, Langone Med Ctr, New York, NY USA
关键词
NODULE DETECTION; COST-EFFECTIVENESS; AIDED DETECTION; PULMONARY NODULES; CT; PERFORMANCE; SYSTEM; VALIDATION; IMAGES; TRIAL;
D O I
10.1038/s41591-019-0447-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With an estimated 160,000 deaths in 2018, lung cancer is the most common cause of cancer death in the United States(1). Lung cancer screening using low-dose computed tomography has been shown to reduce mortality by 20-43% and is now included in US screening guidelines(1-6). Existing challenges include inter-grader variability and high false-positive and false-negative rates(7-10). We propose a deep learning algorithm that uses a patient's current and prior computed tomography volumes to predict the risk of lung cancer. Our model achieves a state-of-the-art performance (94.4% area under the curve) on 6,716 National Lung Cancer Screening Trial cases, and performs similarly on an independent clinical validation set of 1,139 cases. We conducted two reader studies. When prior computed tomography imaging was not available, our model outperformed all six radiologists with absolute reductions of 11% in false positives and 5% in false negatives. Where prior computed tomography imaging was available, the model performance was on-par with the same radiologists. This creates an opportunity to optimize the screening process via computer assistance and automation. While the vast majority of patients remain unscreened, we show the potential for deep learning models to increase the accuracy, consistency and adoption of lung cancer screening worldwide.
引用
收藏
页码:954 / +
页数:24
相关论文
共 50 条
[31]  
National Cancer Institute, 2018, NAT LUNG SCREEN TRIA
[32]   Performance of Lung-RADS in the National Lung Screening Trial A Retrospective Assessment [J].
Pinsky, Paul F. ;
Gierada, David S. ;
Black, William ;
Munden, Reginald ;
Nath, Hrudaya ;
Aberle, Denise ;
Kazerooni, Ella .
ANNALS OF INTERNAL MEDICINE, 2015, 162 (07) :485-U154
[33]   National Lung Screening Trial: Variability in Nodule Detection Rates in Chest CT Studies [J].
Pinsky, Paul F. ;
Gierada, David S. ;
Nath, P. Hrudaya ;
Kazerooni, Ella ;
Amorosa, Judith .
RADIOLOGY, 2013, 268 (03) :865-873
[34]  
Quantitative Insights, 2018, QUANT INS GAINS IND
[35]   ImageNet Large Scale Visual Recognition Challenge [J].
Russakovsky, Olga ;
Deng, Jia ;
Su, Hao ;
Krause, Jonathan ;
Satheesh, Sanjeev ;
Ma, Sean ;
Huang, Zhiheng ;
Karpathy, Andrej ;
Khosla, Aditya ;
Bernstein, Michael ;
Berg, Alexander C. ;
Fei-Fei, Li .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) :211-252
[36]   Effect of CAD on Radiologists' Detection of Lung Nodules on Thoracic CT Scans: Analysis of an Observer Performance Study by Nodule Size [J].
Sahiner, Berkman ;
Chan, Heang-Ping ;
Hadjiiski, Lubomir M. ;
Cascade, Philip N. ;
Kazerooni, Ella A. ;
Chughtai, Aamer R. ;
Poopat, Chad ;
Song, Thomas ;
Frank, Luba ;
Stojanovska, Jadranka ;
Attili, Anil .
ACADEMIC RADIOLOGY, 2009, 16 (12) :1518-1530
[37]   Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge [J].
Setio, Arnaud Arindra Adiyoso ;
Traverso, Alberto ;
de Bel, Thomas ;
Berens, Moira S. N. ;
van den Bogaard, Cas ;
Cerello, Piergiorgio ;
Chen, Hao ;
Dou, Qi ;
Evelina Fantacci, Maria ;
Geurts, Bram ;
van der Gugten, Robbert ;
Heng, Pheng Ann ;
Jansen, Bart ;
de Kaste, Michael M. J. ;
Kotov, Valentin ;
Lin, Jack Yu-Hung ;
Manders, Jeroen T. M. C. ;
Sonora-Mengana, Alexander ;
Carlos Garcia-Naranjo, Juan ;
Papavasileiou, Evgenia ;
Prokop, Mathias ;
Saletta, Marco ;
Schaefer-Prokop, Cornelia M. ;
Scholten, Ernst T. ;
Scholten, Luuk ;
Snoeren, Miranda M. ;
Lopez Torres, Ernesto ;
Vandemeulebroucke, Jef ;
Walasek, Nicole ;
Zuidhof, Guido C. A. ;
van Ginneken, Bram ;
Jacobs, Colin .
MEDICAL IMAGE ANALYSIS, 2017, 42 :1-13
[38]   Evaluation of Reader Variability in the Interpretation of Follow-up CT Scans at Lung Cancer Screening [J].
Singh, Satinder ;
Pinsky, Paul ;
Fineberg, Naomi S. ;
Gierada, David S. ;
Garg, Kavita ;
Sun, Yanhui ;
Nath, P. Hrudaya .
RADIOLOGY, 2011, 259 (01) :263-270
[39]  
Sun Y., 2011, P 12 ACM C ELECT COM, P177, DOI DOI 10.1145/1993574.1993601
[40]   Rethinking the Inception Architecture for Computer Vision [J].
Szegedy, Christian ;
Vanhoucke, Vincent ;
Ioffe, Sergey ;
Shlens, Jon ;
Wojna, Zbigniew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2818-2826