End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography

被引:1255
作者
Ardila, Diego [1 ]
Kiraly, Atilla P. [1 ]
Bharadwaj, Sujeeth [1 ]
Choi, Bokyung [1 ]
Reicher, Joshua J. [2 ,3 ]
Peng, Lily [1 ]
Tse, Daniel [1 ]
Etemadi, Mozziyar [4 ]
Ye, Wenxing [1 ]
Corrado, Greg [1 ]
Naidich, David P. [5 ]
Shetty, Shravya [1 ]
机构
[1] Google AI, Mountain View, CA 94043 USA
[2] Stanford Hlth Care, Palo Alto, CA USA
[3] Palo Alto Vet Affairs, Palo Alto, CA USA
[4] Northwestern Med, Chicago, IL USA
[5] NYU, Ctr Biol Imaging, Langone Med Ctr, New York, NY USA
关键词
NODULE DETECTION; COST-EFFECTIVENESS; AIDED DETECTION; PULMONARY NODULES; CT; PERFORMANCE; SYSTEM; VALIDATION; IMAGES; TRIAL;
D O I
10.1038/s41591-019-0447-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With an estimated 160,000 deaths in 2018, lung cancer is the most common cause of cancer death in the United States(1). Lung cancer screening using low-dose computed tomography has been shown to reduce mortality by 20-43% and is now included in US screening guidelines(1-6). Existing challenges include inter-grader variability and high false-positive and false-negative rates(7-10). We propose a deep learning algorithm that uses a patient's current and prior computed tomography volumes to predict the risk of lung cancer. Our model achieves a state-of-the-art performance (94.4% area under the curve) on 6,716 National Lung Cancer Screening Trial cases, and performs similarly on an independent clinical validation set of 1,139 cases. We conducted two reader studies. When prior computed tomography imaging was not available, our model outperformed all six radiologists with absolute reductions of 11% in false positives and 5% in false negatives. Where prior computed tomography imaging was available, the model performance was on-par with the same radiologists. This creates an opportunity to optimize the screening process via computer assistance and automation. While the vast majority of patients remain unscreened, we show the potential for deep learning models to increase the accuracy, consistency and adoption of lung cancer screening worldwide.
引用
收藏
页码:954 / +
页数:24
相关论文
共 50 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening [J].
Aberle, Denise R. ;
Adams, Amanda M. ;
Berg, Christine D. ;
Black, William C. ;
Clapp, Jonathan D. ;
Fagerstrom, Richard M. ;
Gareen, Ilana F. ;
Gatsonis, Constantine ;
Marcus, Pamela M. ;
Sicks, JoRean D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (05) :395-409
[3]   The Lung Image Database Consortium (LIDC): An evaluation of radiologist variability in the identification of lung nodules on CT scans [J].
Armato, Samuel G., III ;
McNitt-Gray, Michael F. ;
Reeves, Anthony P. ;
Meyer, Charles R. ;
McLennan, Geoffrey ;
Aberle, Denise R. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Hoffman, Eric A. ;
Henschke, Claudia I. ;
Roberts, Rachael Y. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Pais, Richard C. ;
Piker, Christopher W. ;
Qing, David ;
Kocherginsky, Masha ;
Croft, Barbara Y. ;
Clarke, Laurence P. .
ACADEMIC RADIOLOGY, 2007, 14 (11) :1409-1421
[4]   Lung cancer: Performance of automated lung nodule detection applied to cancers missed in a CT screening program [J].
Armato, SG ;
Li, F ;
Giger, ML ;
MacMahon, H ;
Sone, S ;
Doi, K .
RADIOLOGY, 2002, 225 (03) :685-692
[5]   A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model [J].
Bellotti, R. ;
De Carlo, F. ;
Gargano, G. ;
Tangaro, S. ;
Cascio, D. ;
Catanzariti, E. ;
Cerello, P. ;
Cheran, S. C. ;
Delogu, P. ;
De Mitri, I. ;
Fulcheri, C. ;
Grosso, D. ;
Retico, A. ;
Squarcia, S. ;
Tommasi, E. ;
Golosio, Bruno .
MEDICAL PHYSICS, 2007, 34 (12) :4901-4910
[6]   Cost-Effectiveness of CT Screening in the National Lung Screening Trial [J].
Black, William C. ;
Gareen, Ilana F. ;
Soneji, Samir S. ;
Sicks, JoRean D. ;
Keeler, Emmett B. ;
Aberle, Denise R. ;
Naeim, Arash ;
Church, Timothy R. ;
Silvestri, Gerard A. ;
Gorelick, Jeremy ;
Gatsonis, Constantine .
NEW ENGLAND JOURNAL OF MEDICINE, 2014, 371 (19) :1793-1802
[7]   Impact of a Computer-Aided Detection (CAD) System Integrated into a Picture Archiving and Communication System (PACS) on Reader Sensitivity and Efficiency for the Detection of Lung Nodules in Thoracic CT Exams [J].
Bogoni, Luca ;
Ko, Jane P. ;
Alpert, Jeffrey ;
Anand, Vikram ;
Fantauzzi, John ;
Florin, Charles H. ;
Koo, Chi Wan ;
Mason, Derek ;
Rom, William ;
Shiau, Maria ;
Salganicoff, Marcos ;
Naidich, David P. .
JOURNAL OF DIGITAL IMAGING, 2012, 25 (06) :771-781
[8]   Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset [J].
Carreira, Joao ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4724-4733
[9]  
CHEN CW, 2018, IEEE T PATTERN ANAL, DOI DOI 10.1109/TPAMI.2018.2858826
[10]  
Chihara L.M., 2014, MATH STAT RESAMPLING