Improving genomic prediction of growth and wood traits in Eucalyptus using phenotypes from non-genotyped trees by single-step GBLUP

被引:40
|
作者
Cappa, Eduardo P. [1 ,2 ]
de Lima, Bruno Marco [3 ]
da Silva-Junior, Orzenil B. [4 ]
Garcia, Carla C. [6 ]
Mansfield, Shawn D. [7 ]
Grattapaglia, Dario [4 ,5 ]
机构
[1] INTA, Inst Recursos Biol, Ctr Invest Recursos Nat, De Los Reseros & Dr Nicolas Repetto S-N, RA-1686 Hurlingham, Buenos Aires, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Buenos Aires, DF, Argentina
[3] FIBRIA SA Technol Ctr, BR-12340010 Jacarei, SP, Brazil
[4] EPQB Final, EMBRAPA Genet Resources & Biotechnol, W5 Norte, BR-70770917 Brasilia, DF, Brazil
[5] Univ Catolica Brasilia, Genom Sci Program, SGAN 916, Brasilia, DF, Brazil
[6] Int Paper Brazil, Rodovia SP 340 KM 171, BR-13840970 Mogi Guacu, SP, Brazil
[7] Univ British Columbia, Dept Wood Sci, Fac Forestry, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
基金
巴西圣保罗研究基金会;
关键词
Eucalyptus; Single-step genomic evaluation; Additional phenotypic information; Accuracy; Bias; GENETIC EVALUATION; FULL PEDIGREE; RELATIONSHIP MATRIX; SELECTION; INFORMATION; ACCURACY; WHITE; HERITABILITY; RESISTANCE; FAMILIES;
D O I
10.1016/j.plantsci.2019.03.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genomic Best Linear Unbiased Prediction (GBLUP) in tree breeding typically only uses information from genotyped trees. However, information from phenotyped but non-genotyped trees can also be highly valuable. The single-step GBLUP approach (ssGBLUP) allows genomic prediction to take into account both genotyped and non-genotyped trees simultaneously in a single evaluation. In this study, we investigated the advantage, in terms of breeding value accuracy and bias, of including phenotypic observation from non-genotyped trees in a standard tree GBLUP evaluation. We compared the efficiency of the conventional pedigree-based (ABLUP), GBLUP and ssGBLUP approaches to evaluate eight growth and wood quality traits in a Eucalyptus hybrid population, genotyped with 33,398 single nucleotide polymorphisms (SNPs) using the EucHIP60k. Theoretical accuracies, predictive ability and bias were calculated by ten-fold cross validation on all traits. The use of additional phenotypic information from non-genotyped trees by means of ssGBLUP provided higher predictive ability (from 37% to 75%) and lower prediction bias (from 21% to 73%) for the genetic component of non-phenotyped but genotyped trees when compared to GBLUP. The increase (decrease) in the prediction accuracy (bias) became stronger as trait heritability decreased. We concluded that ssGBLUP is a promising breeding tool to improve accuracies and bias over classical GBLUP for genomic evaluation in Eucalyptus breeding practice.
引用
收藏
页码:9 / 15
页数:7
相关论文
共 28 条
  • [21] Prediction accuracy of single-step BLUP for growth and wood quality traits in the lodgepole pine breeding program in British Columbia
    Ukrainetz, Nicholas K.
    Mansfield, Shawn D.
    TREE GENETICS & GENOMES, 2020, 16 (05)
  • [22] Genomic Prediction Using Alternative Strategies of Weighted Single-Step Genomic BLUP for Yearling Weight and Carcass Traits in Hanwoo Beef Cattle
    Mehrban, Hossein
    Naserkheil, Masoumeh
    Lee, Deuk Hwan
    Cho, Chungil
    Choi, Taejeong
    Park, Mina
    Ibanez-Escriche, Noelia
    GENES, 2021, 12 (02) : 1 - 17
  • [23] Single-step genomic prediction of Eucalyptus dunnii using different identity-by-descent and identity-by-state relationship matrices
    Esteban J. Jurcic
    Pamela V. Villalba
    Pablo S. Pathauer
    Dino A. Palazzini
    Gustavo P. J. Oberschelp
    Leonel Harrand
    Martín N. Garcia
    Natalia C. Aguirre
    Cintia V. Acuña
    María C. Martínez
    Juan G. Rivas
    Esteban F. Cisneros
    Juan A. López
    Susana N. Marcucci Poltri
    Sebastián Munilla
    Eduardo P. Cappa
    Heredity, 2021, 127 : 176 - 189
  • [24] Single-step genomic prediction of Eucalyptus dunnii using different identity-by-descent and identity-by-state relationship matrices
    Jurcic, Esteban J.
    Villalba, Pamela V.
    Pathauer, Pablo S.
    Palazzini, Dino A.
    Oberschelp, Gustavo P. J.
    Harrand, Leonel
    Garcia, Martin N.
    Aguirre, Natalia C.
    Acuna, Cintia, V
    Martinez, Maria C.
    Rivas, Juan G.
    Cisneros, Esteban F.
    Lopez, Juan A.
    Marcucci Poltri, Susana N.
    Munilla, Sebastian
    Cappa, Eduardo P.
    HEREDITY, 2021, 127 (02) : 176 - 189
  • [25] Genomic selection in American mink (Neovison vison) using a single-step genomic best linear unbiased prediction model for size and quality traits graded on live mink
    Villumsen, Trine M.
    Su, Guosheng
    Guldbrandtsen, Bernt
    Asp, Torben
    Lund, Mogens S.
    JOURNAL OF ANIMAL SCIENCE, 2021, 99 (01)
  • [26] Genome-enabled prediction of meat and carcass traits using Bayesian regression, single-step genomic best linear unbiased prediction and blending methods in Nelore cattle
    Lopes, F. B.
    Baldi, F.
    Passafaro, T. L.
    Brunes, L. C.
    Costa, M. F. O.
    Eifert, E. C.
    Narciso, M. G.
    Rosa, G. J. M.
    Lobo, R. B.
    Magnabosco, C. U.
    ANIMAL, 2021, 15 (01)
  • [27] Genome-wide association study and genomic evaluation of feed efficiency traits in Japanese Black cattle using single-step genomic best linear unbiased prediction method
    Takeda, Masayuki
    Uemoto, Yoshinobu
    Inoue, Keiichi
    Ogino, Atushi
    Nozaki, Takayoshi
    Kurogi, Kazuhito
    Yasumori, Takanori
    Satoh, Masahiro
    ANIMAL SCIENCE JOURNAL, 2020, 91 (01)
  • [28] Genomic prediction of milk-production traits and somatic cell score using single-step genomic best linear unbiased predictor with random regression test-day model in Thai dairy cattle
    Buaban, S.
    Prempree, S.
    Sumreddee, P.
    Duangjinda, M.
    Masuda, Y.
    JOURNAL OF DAIRY SCIENCE, 2021, 104 (12) : 12713 - 12723