An innovative method to quickly and simply prepare TiO2 nanorod arrays and improve their performance in photo water splitting

被引:19
作者
Su, Yuh-Fan [1 ]
Lee, Mong-Chieh [1 ]
Wang, Guan-Bo [1 ]
Shih, Yang-Hsin [1 ]
机构
[1] Natl Taiwan Univ, Dept Agr Chem, Taipei 106, Taiwan
关键词
TiO2; Nanorod array; Nitric acid; Photocurrent; Photocatalytic activity; SENSITIZED SOLAR-CELLS; LOW-TEMPERATURE GROWTH; RUTILE TIO2; HYDROTHERMAL PREPARATION; NANOTUBE ARRAYS; NANOSIZE RUTILE; THIN-FILMS; ANATASE; PHASE; EFFICIENCY;
D O I
10.1016/j.cej.2014.05.076
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We developed a simple way to synthesize TiO2 nanorod array on a Ti foil under moderate conditions in an ambient atmosphere. The morphology of the TiO2 nanostructure synthesized by titanium salts and acids depends on the type of acid and Ti precursors. The growth of rutile TiO2 nanorods with a diameter of 20-180 nm on a Ti foil was obtained when Ti foil was treated in the presence of TiCI4 and HNO3. The diameters and growth rates of TiO2 nanorods increased with increasing concentrations of HNO3 and Ti precursor. As a consequence, these factors can easily be tuned to generate the desired TiO2 nanorod array in this proposed process. By calcining at a temperature of 550 degrees C, the TiO2 nanorod arrays exhibited optimal photocatalytic activity due to an oriented nanorod structure and good crystallinity. The photoconversion efficiency is a function of array thickness and nanorod morphology. Due to an oriented nanorod structure beneficial to electron transfer, the TiO2 nanorod array has a maximum photoconversion efficiency of 8.65% higher than that of the compact nanoparticle film of 2.33%. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:274 / 280
页数:7
相关论文
共 48 条
[1]   Study of hybrid solar cells made of multilayer nanocrystalline titania and poly(3-octylthiophene) or poly-(3-(2-methylhex-2-yl)-oxy-carbonyldithiophene) [J].
Antoniadou, Maria ;
Stathatos, Elias ;
Boukos, Nikolaos ;
Stefopoulos, Andreas ;
Kallitsis, Joannis ;
Krebs, Frederik C. ;
Lianos, Panagiotis .
NANOTECHNOLOGY, 2009, 20 (49)
[2]   Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers [J].
Aruna, ST ;
Tirosh, S ;
Zaban, A .
JOURNAL OF MATERIALS CHEMISTRY, 2000, 10 (10) :2388-2391
[3]   An investigation of the performance of catalytic aerogel filters [J].
Cao, Shengli ;
Yeung, King Lun ;
Kwan, Joseph K. C. ;
To, Percy M. T. ;
Yu, Samuel C. T. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 86 (3-4) :127-136
[4]   HYDROTHERMAL PREPARATION OF UNIFORM NANOSIZE RUTILE AND ANATASE PARTICLES [J].
CHENG, HM ;
MA, JM ;
ZHAO, ZG ;
QI, LM .
CHEMISTRY OF MATERIALS, 1995, 7 (04) :663-671
[5]   Preparation of high-aspect-ratio TiO2 nanotube arrays for the photocatalytic reduction of NO in air streams [J].
Chou, Yiang-Chen ;
Ku, Young .
CHEMICAL ENGINEERING JOURNAL, 2013, 225 :734-743
[6]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[7]   Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes [J].
Ghicov, Andrei ;
Macak, Jan M. ;
Tsuchiya, Hiroaki ;
Kunze, Julia ;
Haeublein, Volker ;
Frey, Lothar ;
Schmuki, Patrik .
NANO LETTERS, 2006, 6 (05) :1080-1082
[8]   Rectangular Bunched Rutile TiO2 Nanorod Arrays Grown on Carbon Fiber for Dye-Sensitized Solar Cells [J].
Guo, Wenxi ;
Xu, Chen ;
Wang, Xue ;
Wang, Sihong ;
Pan, Caofeng ;
Lin, Changjian ;
Wang, Zhong Lin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) :4437-4441
[9]   Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions [J].
Hosono, E ;
Fujihara, S ;
Kakiuchi, K ;
Imai, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (25) :7790-7791
[10]   Tailoring the nanoscale boundary cavities in rutile TiO2 hierarchical microspheres for giant dielectric performance [J].
Hu, Wanbiao ;
Li, Liping ;
Tong, Wenming ;
Li, Guangshe ;
Yan, Tingjiang .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (39) :8659-8667