Automorphisms of finite groups

被引:37
作者
Juriaans, SO
De Miranda, JM
Robério, JR
机构
[1] Univ Sao Paulo, Inst Matemat & Estatist, BR-05315970 Sao Paulo, Brazil
[2] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil
基金
美国国家科学基金会;
关键词
automorphism; class preserving; group; conjugate;
D O I
10.1081/AGB-120029897
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the classification of those finite groups G having a non-inner class preserving. automorphism. Criteria for these automorphisms to be inner are established. Let G be a nilpotent-by-nilpotent group and S is an element of Syl(2)(G). If S is abelian, generalized quaternion or S is dihedral, and in this case G is also metabelian, then Out(c)(G) = 1. If S is generalized quaternion, L(S) subset of L(G) and S-4 is not a homomorphic image of G, then Out(c)(G) = 1. As a consequence, it follows that the normalizer problem of group rings has a positive answer for these groups.
引用
收藏
页码:1705 / 1714
页数:10
相关论文
共 14 条
[1]  
Burnside W, 1913, P LOND MATH SOC, V11, P40
[2]   LOCALLY TRIVIAL OUTER AUTOMORPHISMS OF FINITE GROUPS [J].
DADE, EC .
MATHEMATISCHE ZEITSCHRIFT, 1970, 114 (03) :173-&
[3]  
Gorenstein D., 2007, FINITE GROUPS
[4]   AUTOMORPHISMS WHICH CENTRALIZE A SYLOW P-SUBGROUP [J].
GROSS, F .
JOURNAL OF ALGEBRA, 1982, 77 (01) :202-233
[5]   A counterexample to the isomorphism problem for integral group rings [J].
Hertweck, M .
ANNALS OF MATHEMATICS, 2001, 154 (01) :115-138
[6]   Class-preserving automorphisms of finite groups [J].
Hertweck, M .
JOURNAL OF ALGEBRA, 2001, 241 (01) :1-26
[7]  
HERTWECK M, CLASS PRESERVING COL
[8]   GROUP AUTOMORPHISMS INDUCING THE IDENTITY MAP ON COHOMOLOGY [J].
JACKOWSKI, S ;
MARCINIAK, Z .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1987, 44 (1-3) :241-250
[9]   On the normalizer problem [J].
Jespers, E ;
Juriaans, SO ;
de Miranda, JM ;
Rogerio, JR .
JOURNAL OF ALGEBRA, 2002, 247 (01) :24-36
[10]   The normalizer of a metabelian group in its integral group ring [J].
Li, YL .
JOURNAL OF ALGEBRA, 2002, 256 (02) :343-351