A model with no magic set

被引:9
作者
Ciesielski, K [1 ]
Shelah, S
机构
[1] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
[2] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
D O I
10.2307/2586790
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will prove that there exists a model of ZFC+"c = omega(2)" in which every M subset of or equal to R of cardinality less than continuum c is meager, and such that for every X subset of or equal to R of cardinality c there exists a continuous function f : R --> R with f[X] = [0, 1]. In particular in this model there is no magic set, i.e., a set M subset of or equal to R such that the equation f[M] = g[M] implies f = g for every continuous nowhere constant functions f, g : R --> R.
引用
收藏
页码:1467 / 1490
页数:24
相关论文
共 11 条
[1]  
[Anonymous], 1995, SET THEORY
[2]  
[Anonymous], LECT NOTES MATH
[3]  
Baumgartner J.E., 1979, ANN MATH LOGIC, V17, P271
[4]  
Berarducci A., 1993, Rend. Ist. Mat. Univ. Trieste, V25, P23
[5]   Sets on which measurable functions are determined by their range [J].
Burke, MR ;
Ciesielski, K .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (06) :1089-1116
[6]  
BURKE MR, 1999, IN PRESS P AM MATH S
[7]  
Ciesielski K., 1997, LONDON MATH SOC STUD, V39
[9]  
Kunen K., 1983, SET THEORY
[10]   MAPPING A SET OF REALS ONTO THE REALS [J].
MILLER, AW .
JOURNAL OF SYMBOLIC LOGIC, 1983, 48 (03) :575-584