Complex Human Pose Estimation via Keypoints Association Constraint Network

被引:4
|
作者
Zhu, Xuan [1 ]
Guo, Zhenpeng [1 ]
Liu, Xin [1 ]
Li, Bin [1 ]
Peng, Jinye [1 ]
Chen, Peirong [1 ]
Wang, Rongzhi [1 ]
机构
[1] Northwest Univ, Sch Informat Sci & Technol, Xian 710127, Peoples R China
关键词
Human pose estimation; KACNet; association loss function; weighted loss function;
D O I
10.1109/ACCESS.2020.3037736
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human pose estimation has attracted enormous interest in the field of human action recognition. When the human pose is complex (such as pose distortion, pose reversal, etc.) or there is background interference (multi-target, shadow, etc.), the keypoints obtained by existing methods of human pose estimation often have incorrect positioning, category, and connection. This paper proposes a novel human pose estimation network KACNet via the keypoint association constraints. The Channel-1 of KACNet is constrained by the distance loss function to obtain the position of keypoints, and the Channel-2 of KACNet is constrained by the association loss function to obtain the relationship of keypoints. Then, the position and relationship of keypoints are fused by the weighted loss function to obtain the keypoints with accurate location, classification, and connection. Experiments on a large number of public datasets and Internet data show that our method can effectively suppress background interference to improve the accuracy of complex human pose estimation. Compared with state-of-the-art human pose estimation methods, the proposed methods can accurately locate, classify, and connect the human body keypoints robustly.
引用
收藏
页码:205938 / 205947
页数:10
相关论文
共 50 条
  • [1] HKE-GCN: Heatmaps-guided Keypoints Encoder and Graph Convolutional Network for Human Pose Estimation
    Xia, Han
    Wang, Yiran
    Wang, Xiaoru
    Xiong, Songkai
    Yu, Zhihong
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [2] Monocular Human Depth Estimation Via Pose Estimation
    Jun, Jinyoung
    Lee, Jae-Han
    Lee, Chul
    Kim, Chang-Su
    IEEE ACCESS, 2021, 9 : 151444 - 151457
  • [3] HUMAN POSE ESTIMATION BASED ON CONSTRAINT PICTORIAL STRUCTURE MODEL
    Luo, Wanying
    Ruan, Qiuqi
    2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 1257 - 1262
  • [4] Hierarchical Keypoints Feature Alignment for Domain Adaptive Pose Estimation
    Xu, Jie
    Liu, Yunan
    Yang, Jian
    Zhang, Shanshan
    NEUROCOMPUTING, 2025, 611
  • [5] Improved DenseNet network for human pose estimation
    Shi Y.-X.
    Xu X.-Q.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (05): : 1206 - 1212
  • [6] Structure guided network for human pose estimation
    Chen, Yilei
    Xie, Xuemei
    Yin, Wenjie
    Li, Bo'ao
    Li, Fu
    APPLIED INTELLIGENCE, 2023, 53 (18) : 21012 - 21026
  • [7] Structure guided network for human pose estimation
    Yilei Chen
    Xuemei Xie
    Wenjie Yin
    Bo’ao Li
    Fu Li
    Applied Intelligence, 2023, 53 : 21012 - 21026
  • [8] A faster hourglass network for human pose estimation
    Lu, Fan
    Yang, Yan
    Zhao, Yabang
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 685 - 692
  • [9] Attention Refined Network for Human Pose Estimation
    Xiangyang Wang
    Jiangwei Tong
    Rui Wang
    Neural Processing Letters, 2021, 53 : 2853 - 2872
  • [10] Attention Refined Network for Human Pose Estimation
    Wang, Xiangyang
    Tong, Jiangwei
    Wang, Rui
    NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2853 - 2872