Topological phase transition in a discrete quasicrystal

被引:3
作者
Sagi, Eran [1 ]
Eisenberg, Eli [1 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 01期
关键词
LONG-RANGE ORDER; SYMMETRY-BREAKING; PHONONS;
D O I
10.1103/PhysRevE.90.012105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate a two-dimensional tiling model. Even though the degrees of freedom in this model are discrete, it has a hidden continuous global symmetry in the infinite lattice limit, whose corresponding Goldstone modes are the quasicrystalline phasonic degrees of freedom. We show that due to this continuous symmetry and despite the apparent discrete nature of the model, a topological phase transition from a quasi-long-range ordered to a disordered phase occurs at a finite temperature, driven by vortex proliferation. We argue that some of the results are universal properties of two-dimensional systems whose ground state is a quasicrystalline state.
引用
收藏
页数:7
相关论文
共 32 条
  • [1] [Anonymous], 1986, TILINGS PATTERNS
  • [2] Phonons, phasons and atomic dynamics in quasicrystals
    de Boissieu, Marc
    [J]. CHEMICAL SOCIETY REVIEWS, 2012, 41 (20) : 6778 - 6786
  • [3] DEFECT-MEDIATED MELTING OF PENTAGONAL QUASICRYSTALS
    DE, P
    PELCOVITS, RA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (08): : 1167 - 1177
  • [4] ISING-LIKE TRANSITION AND PHASON UNLOCKING IN ICOSAHEDRAL QUASI-CRYSTALS
    DOTERA, T
    STEINHARDT, PJ
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (11) : 1670 - 1673
  • [5] PHASE STRUCTURE OF DISCRETE ABELIAN SPIN AND GAUGE SYSTEMS
    ELITZUR, S
    PEARSON, RB
    SHIGEMITSU, J
    [J]. PHYSICAL REVIEW D, 1979, 19 (12): : 3698 - 3714
  • [6] EXISTENCE OF LONG-RANGE ORDER IN 1 AND 2 DIMENSIONS
    HOHENBERG, PC
    [J]. PHYSICAL REVIEW, 1967, 158 (02): : 383 - +
  • [7] 2D models of statistical physics with continuous symmetry: The case of singular interactions
    Ioffe, D
    Shlosman, S
    Velenik, Y
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 226 (02) : 433 - 454
  • [8] FINITE-TEMPERATURE ELASTICITY PHASE-TRANSITION IN DECAGONAL QUASI-CRYSTALS
    JEONG, HC
    STEINHARDT, PJ
    [J]. PHYSICAL REVIEW B, 1993, 48 (13): : 9394 - 9403
  • [9] RENORMALIZATION, VORTICES, AND SYMMETRY-BREAKING PERTURBATIONS IN 2-DIMENSIONAL PLANAR MODEL
    JOSE, JV
    KADANOFF, LP
    KIRKPATRICK, S
    NELSON, DR
    [J]. PHYSICAL REVIEW B, 1977, 16 (03): : 1217 - 1241
  • [10] Modelling Quasicrystals at Positive Temperature
    Koch, Hans
    Radin, Charles
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2010, 138 (1-3) : 465 - 475