On a problem by M. Kazarian

被引:0
作者
Vassiliev, VA [1 ]
机构
[1] VA Steklov Math Inst, Moscow 117333, Russia
基金
俄罗斯基础研究基金会;
关键词
Convex Hull; Compact Subgroup; Function Germ; Equation Alal; Equivariant Homology;
D O I
10.1007/BF02465206
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:220 / 221
页数:2
相关论文
共 50 条
[21]   On a normed version of a Rogers–Shephard type problem [J].
Zsolt Lángi .
Israel Journal of Mathematics, 2016, 212 :203-217
[22]   The central limit problem on locally compact groups [J].
Riddhi Shah .
Israel Journal of Mathematics, 1999, 110 :189-218
[23]   A CONVEX HULL ALGORITHM FOR SOLVING A LOCATION PROBLEM [J].
Nguyen Kieu Linh ;
Le Dung Muu .
RAIRO-OPERATIONS RESEARCH, 2015, 49 (03) :589-600
[24]   The linear separability problem: Some testing methods [J].
Elizondo, D .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (02) :330-344
[25]   Parallelization alternatives and their performance for the convex hull problem [J].
Gonzalez-Escribano, Arturo ;
Llanos, Diego R. ;
Orden, David ;
Palop, Belen .
APPLIED MATHEMATICAL MODELLING, 2006, 30 (07) :563-577
[26]   Discrete probability distributions in the generalized moment problem [J].
Tagliani, A .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 112 (2-3) :333-343
[27]   A FASTER ALGORITHM FOR THE MAXIMUM WEIGHTED TARDINESS PROBLEM [J].
FIELDS, MC ;
FREDERICKSON, GN .
INFORMATION PROCESSING LETTERS, 1990, 36 (01) :39-44
[28]   A polyhedral study of the cardinality constrained knapsack problem [J].
I.R. de Farias Jr ;
G.L. Nemhauser .
Mathematical Programming, 2003, 96 :439-467
[29]   Sylvester's problem for random walks and bridges [J].
Panzo, Hugo .
STATISTICS & PROBABILITY LETTERS, 2025, 219
[30]   A characterization theorem and an algorithm for a convex hull problem [J].
Bahman Kalantari .
Annals of Operations Research, 2015, 226 :301-349