Benthic Habitat Mapping Model and Cross Validation Using Machine-Learning Classification Algorithms

被引:65
作者
Wicaksono, Pramaditya [1 ]
Aryaguna, Prama Ardha [2 ]
Lazuardi, Wahyu [1 ]
机构
[1] Univ Gadjah Mada, Fac Geog, Dept Geog Informat Sci, Yogyakarta 55281, Indonesia
[2] Univ Esa Unggul, Fac Engn, Jakarta 11510, Indonesia
关键词
classification; benthic habitat; machine-learning; mapping; random forest; support vector machine; classification tree analysis; accuracy assessment; CORAL-REEFS; LANDSAT TM; SPECTRAL REFLECTANCE; MARINE ENVIRONMENTS; SPATIAL-RESOLUTION; IMAGE-ANALYSIS; WATER DEPTH; SUN GLINT; SEAGRASS; IKONOS;
D O I
10.3390/rs11111279
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This research was aimed at developing the mapping model of benthic habitat mapping using machine-learning classification algorithms and tested the applicability of the model in different areas. We integrated in situ benthic habitat data and image processing of WorldView-2 (WV2) image to parameterise the machine-learning algorithm, namely: Random Forest (RF), Classification Tree Analysis (CTA), and Support Vector Machine (SVM). The classification inputs are sunglint-free bands, water column corrected bands, Principle Component (PC) bands, bathymetry, and the slope of underwater topography. Kemujan Island was used in developing the model, while Karimunjawa, Menjangan Besar, and Menjangan Kecil Islands served as test areas. The results obtained indicated that RF was more accurate than any other classification algorithm based on the statistics and benthic habitats spatial distribution. The maximum accuracy of RF was 94.17% (4 classes) and 88.54% (14 classes). The accuracies from RF, CTA, and SVM were consistent across different input bands for each classification scheme. The application of RF model in the classification of benthic habitat in other areas revealed that it is recommended to make use of the more general classification scheme in order to avoid several issues regarding benthic habitat variations. The result also established the possibility of mapping a benthic habitat without the use of training areas.
引用
收藏
页数:24
相关论文
共 61 条
[1]   Accuracy of IKONOS for mapping benthic coral-reef habitats: a case study from the Puerto Morelos Reef National Park, Mexico [J].
Andrea Zapata-Ramirez, Paula ;
Blanchon, Paul ;
Olioso, Albert ;
Hernandez-Nunez, Hector ;
Sobrino, Jose A. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (9-10) :3671-3687
[2]   Multi-site evaluation of IKONOS data for classification of tropical coral reef environments [J].
Andréfouët, S ;
Kramer, P ;
Torres-Pulliza, D ;
Joyce, KE ;
Hochberg, EJ ;
Garza-Pérez, R ;
Mumby, PJ ;
Riegl, B ;
Yamano, H ;
White, WH ;
Zubia, M ;
Brock, JC ;
Phinn, SR ;
Naseer, A ;
Hatcher, BG ;
Muller-Karger, FE .
REMOTE SENSING OF ENVIRONMENT, 2003, 88 (1-2) :128-143
[3]  
Badan Informasi Geospasial, 2014, PER KEP BAD INF GEOS
[4]   Mapping the distribution of coral reefs and associated sublittoral habitats in Pacific Panama: a comparison of optical satellite sensors and classification methodologies [J].
Benfield, S. L. ;
Guzman, H. M. ;
Mair, J. M. ;
Young, J. A. T. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (22) :5047-5070
[5]   Mapping of coral reefs using hyperspectral CASI data; a case study: Fordata, Tanimbar, Indonesial [J].
Bertels, L. ;
Vanderstraete, T. ;
Van Coillie, S. ;
Knaeps, E. ;
Sterckx, S. ;
Goossens, R. ;
Deronde, B. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (08) :2359-2391
[6]  
BIERWIRTH PN, 1993, PHOTOGRAMM ENG REM S, V59, P331
[7]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[8]  
Chavez P., 1977, REMOTE SENSING EARTH, V6, P259
[9]  
Cherkassky V, 1997, IEEE Trans Neural Netw, V8, P1564, DOI 10.1109/TNN.1997.641482
[10]   Light requirements of seagrasses determined from historical records of light attenuation along the Gulf coast of peninsular Florida [J].
Choice, Zanethia D. ;
Frazer, Thomas K. ;
Jacoby, Charles A. .
MARINE POLLUTION BULLETIN, 2014, 81 (01) :94-102