BEURLING TYPE INVARIANT SUBSPACES OF COMPOSITION OPERATORS

被引:1
|
作者
Bose, Snehasish [1 ]
Muthukumar, P. [1 ]
Sarkar, Jaydeb [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, India
关键词
Composition operators; invariant subspaces; inner functions; Blaschke products; Schur functions; singular inner functions; Hardy space;
D O I
10.7900/jot.2020may15.2286
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to answer the following question concerning invariant subspaces of composition operators: characterize j, holomorphic self maps of D, and inner functions theta is an element of H infinity (D) such that the Beurling type invariant subspace theta H-2 is an invariant subspace for C sec. We prove the following result: Csec(theta H-2) subset of theta H-2 if and only if theta circle SEC / theta is an element of S(D).
引用
收藏
页码:425 / 438
页数:14
相关论文
共 50 条