The COVID-19 social media infodemic

被引:1058
作者
Cinelli, Matteo [1 ,2 ]
Quattrociocchi, Walter [1 ,2 ,3 ]
Galeazzi, Alessandro [4 ]
Valensise, Carlo Michele [5 ]
Brugnoli, Emanuele [1 ]
Schmidt, Ana Lucia [2 ]
Zola, Paola [6 ]
Zollo, Fabiana [1 ,2 ,7 ]
Scala, Antonio [1 ,3 ]
机构
[1] CNR, ISC, Rome, Italy
[2] Univ Ca Foscari Venezia, Venice, Italy
[3] Big Data Hlth Soc, Rome, Italy
[4] Univ Brescia, Brescia, Italy
[5] Politecn Milan, Milan, Italy
[6] CNR, IIT, Pisa, Italy
[7] Ctr Humanities & Social Change, Venice, Italy
关键词
NEWS; TWITTER; SPREAD;
D O I
10.1038/s41598-020-73510-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We address the diffusion of information about the COVID-19 with a massive data analysis on Twitter, Instagram, YouTube, Reddit and Gab. We analyze engagement and interest in the COVID-19 topic and provide a differential assessment on the evolution of the discourse on a global scale for each platform and their users. We fit information spreading with epidemic models characterizing the basic reproduction number R0 for each social media platform. Moreover, we identify information spreading from questionable sources, finding different volumes of misinformation in each platform. However, information from both reliable and questionable sources do not present different spreading patterns. Finally, we provide platform-dependent numerical estimates of rumors' amplification.
引用
收藏
页数:10
相关论文
共 51 条
  • [1] Alam F., 2020, ARXIV200500033
  • [2] [Anonymous], 2010, Twitter under Crisis: Can We Trust what We RT? the First Workshop on Social Media Analytics (SOMA10), DOI [10.1145/1964858.1964869, DOI 10.1145/1964858.1964869]
  • [3] Exposure to opposing views on social media can increase political polarization
    Bail, Christopher A.
    Argyle, Lisa P.
    Brown, Taylor W.
    Bumpus, John P.
    Chen, Haohan
    Hunzaker, M. B. Fallin
    Lee, Jaemin
    Mann, Marcus
    Merhout, Friedolin
    Volfovsky, Alexander
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (37) : 9216 - 9221
  • [4] Bailey NTJ., 1975, MATH THEORY INFECT D
  • [5] The emergence of consensus: a primer
    Baronchelli, Andrea
    [J]. ROYAL SOCIETY OPEN SCIENCE, 2018, 5 (02):
  • [6] Modeling Echo Chambers and Polarization Dynamics in Social Networks
    Baumann, Fabian
    Lorenz-Spreen, Philipp
    Sokolov, Igor M.
    Starnini, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (04)
  • [7] Science vs Conspiracy: Collective Narratives in the Age of Misinformation
    Bessi, Alessandro
    Coletto, Mauro
    Davidescu, George Alexandru
    Scala, Antonio
    Caldarelli, Guido
    Quattrociocchi, Walter
    [J]. PLOS ONE, 2015, 10 (02):
  • [8] Influence of fake news in Twitter during the 2016 US presidential election
    Bovet, Alexandre
    Makse, Hernan A.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [9] The Spread of Behavior in an Online Social Network Experiment
    Centola, Damon
    [J]. SCIENCE, 2010, 329 (5996) : 1194 - 1197
  • [10] Chowell Gerardo, 2017, Infect Dis Model, V2, P379, DOI 10.1016/j.idm.2017.08.001