On a key sampling formula relating the Laplace and F transforms

被引:10
作者
Braslavsky, J [1 ]
Meinsma, G [1 ]
Middleton, R [1 ]
Freudenberg, J [1 ]
机构
[1] UNIV MICHIGAN,DEPT ELECT ENGN & COMP SCI,ANN ARBOR,MI 48109
关键词
F transform; sampled-data systems; frequency response; discrete-time systems;
D O I
10.1016/S0167-6911(96)00070-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note provides a new, rigorous derivation of a key sampling formula for discretizing an analogue system. The required conditions are formulated in time-domain, and give a clear characterization of the classes of signals and systems to which the formula applies.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 34 条
  • [1] [Anonymous], 1961, FOURIER TRANSFORMS
  • [2] Frequency response of sampled-data systems
    Araki, M
    Ito, Y
    Hagiwara, T
    [J]. AUTOMATICA, 1996, 32 (04) : 483 - 497
  • [3] ARAKI M, 1993, P 12 IFAC WORLD C, P289
  • [4] Astrom K.J., 1990, COMPUTER CONTROLLED
  • [5] BRASLAVSKY JH, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P1040
  • [6] BRASLAVSKY JH, 1995, P 34 CDC NEW ORL
  • [7] USE OF CONVOLUTION INTEGRAL IN SAMPLED-DATA THEORY
    CARROLL, SN
    MCDANIEL, WL
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1966, AC11 (02) : 328 - &
  • [8] CARSLAW HS, 1930, THEORY FOURIERS SERI
  • [9] INPUT OUTPUT STABILITY OF SAMPLED-DATA SYSTEMS
    CHEN, T
    FRANCIS, BA
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (01) : 50 - 58
  • [10] Chen T, 1995, OPTIMAL SAMPLED DATA