A maximum principle related to volume growth and applications

被引:33
作者
Alias, Luis J. [1 ]
Caminha, Antonio [2 ]
do Nascimento, F. Yure [3 ]
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Univ Fed Ceara, Dept Matemat, Campus Pici, BR-60455760 Fortaleza, Ceara, Brazil
[3] Univ Fed Ceara, BR 226,Km 4, Crateus, Ceara, Brazil
关键词
Maximum principle; Riemannian manifolds; Volume growth; Bernstein-type results; Constant mean curvature hypersurfaces; Minimal submanifolds; MEAN-CURVATURE; HYPERSURFACES;
D O I
10.1007/s10231-020-01051-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive a new form of maximum principle for smooth functions on a complete noncompact Riemannian manifold M for which there exists a bounded vector field X such that <del f , X > >= 0 on M and divX >= af outside a suitable compact subset of M, for some constant a > 0, under the assumption that M has either polynomial or exponential volume growth. We then use it to obtain some Bernstein-type results for hypersurfaces immersed into a Riemannian manifold endowed with a Killing vector field, as well as to some results on the existence and size of minimal submanifolds immersed into a Riemannian manifold endowed with a conformal vector field.
引用
收藏
页码:1637 / 1650
页数:14
相关论文
共 12 条
[1]  
Al??as L., 2016, MAXIMUM PRINCIPLES G
[2]   A maximum principle at infinity with applications to geometric vector fields [J].
Alias, L. J. ;
Caminha, A. ;
do Nascimento, F. Y. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) :242-247
[3]   Constant higher-order mean curvature hypersurfaces in Riemannian spaces [J].
Alias, Luis J. ;
De Lira, Jorge H. S. ;
Malacarne, J. Miguel .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2006, 5 (04) :527-562
[4]  
[Anonymous], 1987, Sov. Math. Dokl.
[5]   Curvature estimates for submanifolds immersed into horoballs and horocylinders [J].
Bessa, G. Pacelli ;
de Lira, Jorge H. ;
Pigola, Stefano ;
Setti, Alberto G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 431 (02) :1000-1007
[6]   On submanifolds of highly negatively curved spaces [J].
Bessa, G. Pacelli ;
Pigola, Stefano ;
Setti, Alberto G. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (06)
[7]  
Dillen F, 2009, ANN GLOB ANAL GEOM, V35, P381, DOI 10.1007/s10455-008-9140-x
[8]   Hypersurfaces with a canonical principal direction [J].
Garnica, Eugenio ;
Palmas, Oscar ;
Ruiz-Hernandez, Gabriel .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2012, 30 (05) :382-391
[9]   Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds [J].
Grigor'yan, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (02) :135-249
[10]  
Qiu HB, 2013, ACTA MATH SCI, V33, P1561