Scaling of entanglement entropy in the (branching) multiscale entanglement renormalization ansatz

被引:42
作者
Evenbly, G. [1 ]
Vidal, G. [2 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 23期
关键词
QUANTUM SPIN CHAINS; GROUND-STATE; AREA;
D O I
10.1103/PhysRevB.89.235113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the scaling of entanglement entropy in both the multiscale entanglement renormalization ansatz (MERA) and in its generalization, the branching MERA. We provide analytical upper bounds for this scaling, which take the general form of a boundary law with various types of multiplicative corrections, including power-law corrections all the way to a bulk law. For several cases of interest, we also provide numerical results that indicate that these upper bounds are saturated to leading order. In particular, we establish that, by a suitable choice of holographic tree, the branching MERA can reproduce the logarithmic multiplicative correction of the boundary law observed in Fermi liquids and spin-Bose metals in D >= 2 dimensions.
引用
收藏
页数:15
相关论文
共 39 条
  • [1] Entanglement scaling in critical two-dimensional fermionic and bosonic systems
    Barthel, T.
    Chung, M. -C.
    Schollwoeck, U.
    [J]. PHYSICAL REVIEW A, 2006, 74 (02):
  • [2] Real-Space Renormalization Yields Finite Correlations
    Barthel, Thomas
    Kliesch, Martin
    Eisert, Jens
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (01)
  • [3] Lieb-robinson bounds and the generation of correlations and topological quantum order
    Bravyi, S.
    Hastings, M. B.
    Verstraete, F.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (05)
  • [4] ON GEOMETRIC ENTROPY
    CALLAN, C
    WILCZEK, F
    [J]. PHYSICS LETTERS B, 1994, 333 (1-2) : 55 - 61
  • [5] Renormalization and tensor product states in spin chains and lattices
    Cirac, J. Ignacio
    Verstraete, Frank
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
  • [6] Colloquium: Area laws for the entanglement entropy
    Eisert, J.
    Cramer, M.
    Plenio, M. B.
    [J]. REVIEWS OF MODERN PHYSICS, 2010, 82 (01) : 277 - 306
  • [7] General entanglement scaling laws from time evolution
    Eisert, Jens
    Osborne, Tobias J.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (15)
  • [8] Tensor Network States and Geometry
    Evenbly, G.
    Vidal, G.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (04) : 891 - 918
  • [9] Entanglement renormalization in noninteracting fermionic systems
    Evenbly, G.
    Vidal, G.
    [J]. PHYSICAL REVIEW B, 2010, 81 (23):
  • [10] Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms
    Evenbly, G.
    Vidal, G.
    [J]. NEW JOURNAL OF PHYSICS, 2010, 12