Scaling of entanglement entropy in the (branching) multiscale entanglement renormalization ansatz

被引:43
作者
Evenbly, G. [1 ]
Vidal, G. [2 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 23期
关键词
QUANTUM SPIN CHAINS; GROUND-STATE; AREA;
D O I
10.1103/PhysRevB.89.235113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the scaling of entanglement entropy in both the multiscale entanglement renormalization ansatz (MERA) and in its generalization, the branching MERA. We provide analytical upper bounds for this scaling, which take the general form of a boundary law with various types of multiplicative corrections, including power-law corrections all the way to a bulk law. For several cases of interest, we also provide numerical results that indicate that these upper bounds are saturated to leading order. In particular, we establish that, by a suitable choice of holographic tree, the branching MERA can reproduce the logarithmic multiplicative correction of the boundary law observed in Fermi liquids and spin-Bose metals in D >= 2 dimensions.
引用
收藏
页数:15
相关论文
共 39 条
[1]   Entanglement scaling in critical two-dimensional fermionic and bosonic systems [J].
Barthel, T. ;
Chung, M. -C. ;
Schollwoeck, U. .
PHYSICAL REVIEW A, 2006, 74 (02)
[2]   Real-Space Renormalization Yields Finite Correlations [J].
Barthel, Thomas ;
Kliesch, Martin ;
Eisert, Jens .
PHYSICAL REVIEW LETTERS, 2010, 105 (01)
[3]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[4]   ON GEOMETRIC ENTROPY [J].
CALLAN, C ;
WILCZEK, F .
PHYSICS LETTERS B, 1994, 333 (1-2) :55-61
[5]   Renormalization and tensor product states in spin chains and lattices [J].
Cirac, J. Ignacio ;
Verstraete, Frank .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
[6]   Colloquium: Area laws for the entanglement entropy [J].
Eisert, J. ;
Cramer, M. ;
Plenio, M. B. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (01) :277-306
[7]   General entanglement scaling laws from time evolution [J].
Eisert, Jens ;
Osborne, Tobias J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)
[8]   Tensor Network States and Geometry [J].
Evenbly, G. ;
Vidal, G. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (04) :891-918
[9]   Entanglement renormalization in noninteracting fermionic systems [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW B, 2010, 81 (23)
[10]   Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms [J].
Evenbly, G. ;
Vidal, G. .
NEW JOURNAL OF PHYSICS, 2010, 12