Tri- harmonic boundary value problems in a sector

被引:22
作者
Wang, Ying [1 ]
机构
[1] Zhongnan Univ Econ & Law, Sch Math & Stat, Wuhan 430074, Peoples R China
关键词
Tri-harmonic Green function; Tri-harmonic Neumann function; Dirichlet problem; Neumann problem; DIRICHLET PROBLEM; EQUATION;
D O I
10.1080/17476933.2012.759566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the construction of a tri-harmonic Green function and a tri-harmonic Neumann function in a sector with angle theta=pi/n(n >= 1, n is an element of N) explicitly, as well as a tri-harmonic Neumann function in the unit disk. Then the related Dirichlet and Neumann problems for the tri-Poisson equation are discussed, respectively.
引用
收藏
页码:732 / 749
页数:18
相关论文
共 17 条
  • [1] Abdymanapov S., 2009, World Sci, P1137, DOI [10.1142/9789812835635_0109, DOI 10.1142/9789812835635_0109]
  • [2] Iterated Neumann problem for the higher order Poisson equation
    Begehr, H
    Vanegas, CJ
    [J]. MATHEMATISCHE NACHRICHTEN, 2006, 279 (1-2) : 38 - 57
  • [3] Begehr H, 2008, MATEMATICHE, V63, P139
  • [4] Begehr H., 1994, COMPLEX ANAL METHODS
  • [5] Begehr H., 2005, Bol. Asoc. Mat. Venez, V12, P217
  • [6] Begehr H, 2007, GEORGIAN MATH J, V14, P33
  • [7] A Dirichlet problem for polyharmonic functions
    Begehr, Heinrich
    Du, Jinyuan
    Wang, Yufeng
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) : 435 - 457
  • [8] HARMONIC BOUNDARY VALUE PROBLEMS IN HALF DISC AND HALF RING
    Begehr, Heinrich
    Vaitekhovich, Tatyana
    [J]. FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2009, 40 (02) : 251 - 282
  • [9] Begehr H, 2006, MATEMATICHE, V61, P395
  • [10] BURGUMBAYEVA S, 2009, THESIS FU BERLIN BER