Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain

被引:82
作者
Cerpa, Eduardo [3 ]
Crepeau, Emmanuelle [1 ,2 ]
机构
[1] Univ Versailles St Quentin Yvelines, F-78035 Versailles, France
[2] INRIA Rocquencourt, F-78150 Le Chesnay, France
[3] Univ Paris 11, Lab Math Orsay, F-91405 Orsay, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 02期
关键词
Controllability; Korteweg-de Vries equation; Critical domains; Power series expansion; LOCAL-CONTROLLABILITY; QUANTUM PARTICLE; POTENTIAL WELL; STABILIZATION; FLUID;
D O I
10.1016/j.anihpc.2007.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that the linear Korteweg-de Vries (KdV) equation with homogeneous Dirichlet boundary conditions and Neumann boundary control is not controllable for some critical spatial domains. In this paper, we prove in these critical cases, that the nonlinear KdV equation is locally controllable around the origin provided that the time of control is large enough. It is done by performing a power series expansion of the solution and studying the cascade system resulting of this expansion. (c) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:457 / 475
页数:19
相关论文
共 22 条
[1]   Controllability of a quantum particle in a moving potential well [J].
Beauchard, K ;
Coron, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 232 (02) :328-389
[2]   Local controllability of a 1-D Schrodinger equation [J].
Beauchard, K .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (07) :851-956
[3]   A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (7-8) :1391-1436
[4]   Exact controllability of a nonlinear korteweg de vries equation on a critical spatial domain [J].
Cerpa, Eduardo .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (03) :877-899
[5]  
CHAPOULY M, 2007, GLOBAL CONTROLLABILI
[6]  
CORON J.-M., 2007, Mathematical Surveys and Monographs, Math. Surveys Monogr., V136, DOI 10.1090/surv/136
[7]   Global steady-state stabilization and controllability of 1D semilinear wave equations [J].
Coron, Jean-Michel ;
Trelat, Emmanuel .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (04) :535-567
[8]   On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well [J].
Coron, JM .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (02) :103-108
[9]   Global steady-state controllability of one-dimensional semilinear heat equations [J].
Coron, JM ;
Trélat, E .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (02) :549-569
[10]  
Coron JM, 2004, J EUR MATH SOC, V6, P367