Solutions for a nonhomogeneous elliptic problem involving critical Sobolev-Hardy exponent in RN

被引:10
作者
Wang Zhengping
Zhou Huansong
机构
[1] Chinese Acad Sci, Wuhan Inst Phys & Math, Wuhan 430071, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
critical Sobolev-Hardy exponent; elliptic equation; Mountain Pass theorem; subsuper solutions; nonhomogeneous;
D O I
10.1016/S0252-9602(06)60078-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the following elliptic problem -Delta u - mu u/\x\(2) = \u\(2*(s)-2)u/\x\(s) + h(x), on R-N u is an element of D-1,D-2(R-N), N >= 3, 0 <= mu < <(mu)over bar> = (N-2)(2)/4, 0 <= s < 2, where 2* (s) = 2(N-s)/N-2 is the critical Sobolev-Hardy exponent, h(x) is an element of (D-1,D-2 (R-N))*, the dual space of (D-1,D-2 (R-N)), with h(x) >= (not equivalent to)0. By Ekeland's variational principle, subsuper solutions and a Mountain Pass theorem, the authors prove that the above problem has at least two distinct solutions if parallel to h parallel to(*) < C-N,C-s A(s) (N-s/4-s) (1 - mu/mu)(1/2), C-N,C-s = 4-2s/N-2 (N-s/N+2-2s)(N+2-2s/4-2s) and A(s) = (u is an element of D1,2(RN)/{0})inf integral(RN)(\del u\(2) - (mu u2/\x\2)) dx/(integral(RN) (\u\2*(s)/\x\s) dx) (2/2*(s)).
引用
收藏
页码:525 / 536
页数:12
相关论文
共 15 条