Integral p-adic Hodge theory - announcement

被引:8
作者
Bhatt, B. [1 ]
Morrow, M. [2 ]
Scholze, P. [2 ]
机构
[1] Univ Michigan, Dept Math, 2074 East Hall,530 Church St, Ann Arbor, MI 48109 USA
[2] Univ Bonn, Math Inst, D-53115 Bonn, Germany
关键词
COHOMOLOGY;
D O I
10.4310/MRL.2015.v22.n6.a3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a proper, smooth (formal) scheme over the ring of integers of C-p, we prove that if the crystalline cohomology of its special fibre is torsion-free then the p-adic etale cohomology of its generic fibre is also torsion-free. In this announcement we sketch the proof, which relies on the construction of a new cohomology theory interpolating crystalline and etale cohomology. Further details and results will be presented in the full forthcoming article.
引用
收藏
页码:1601 / 1612
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 1994, PERIODES P ADIQUES, P59
[2]  
Berthelot P., 1978, NOTES CRYSTALLINE CO
[3]  
Bhatt B., 2016, ARXIV160203148
[4]   ENRIQUES CLASSIFICATION OF SURFACES IN CHAR-P .3. [J].
BOMBIERI, E ;
MUMFORD, D .
INVENTIONES MATHEMATICAE, 1976, 35 :197-232
[5]   Conjecture of inertia moderated by Serre [J].
Caruso, Xavier .
INVENTIONES MATHEMATICAE, 2008, 171 (03) :629-699
[6]  
Deligne P., 1974, Inst. Hautes Etudes Sci. Publ. Math, P5, DOI 10.1007/BF02684692
[7]   Integral crystalline cohomology over very ramified valuation rings [J].
Faltings, G .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (01) :117-144
[8]  
Faltings G., 1988, J. Am. Math. Soc, V1, P255, DOI 10.2307/1990970
[9]  
Fargues L, 2015, ASTERISQUE, P325
[10]  
Huber R., 1996, ASPECTS MATH, V30