GEE;
link function;
longitudinal data;
partially linear additive models;
polynomial splines;
REGRESSION;
D O I:
10.3150/12-BEJ479
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We consider efficient estimation of the Euclidean parameters in a generalized partially linear additive models for longitudinal/clustered data when multiple covariates need to be modeled nonparametrically, and propose an estimation procedure based on a spline approximation of the nonparametric part of the model and the generalized estimating equations (GEE). Although the model in consideration is natural and useful in many practical applications, the literature on this model is very limited because of challenges in dealing with dependent data for nonparametric additive models. We show that the proposed estimators are consistent and asymptotically normal even if the covariance structure is misspecified. An explicit consistent estimate of the asymptotic variance is also provided. Moreover, we derive the semiparametric efficiency score and information bound under general moment conditions. By showing that our estimators achieve the semiparametric information bound, we effectively establish their efficiency in a stronger sense than what is typically considered for GEE. The derivation of our asymptotic results relies heavily on the empirical processes tools that we develop for the longitudinal/clustered data. Numerical results are used to illustrate the finite sample performance of the proposed estimators.
机构:
Southeast Univ, Dept Math, Nanjing, Jiangsu, Peoples R ChinaSoutheast Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
Xu, Peirong
Zhang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Shenzhen Univ, Shen Zhen Hong Kong Joint Res Ctr Appl Stat Sci, Inst Stat Sci, Coll Math & Stat, Shenzhen, Peoples R ChinaSoutheast Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
Zhang, Jun
Huang, Xingfang
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Dept Math, Nanjing, Jiangsu, Peoples R ChinaSoutheast Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
Huang, Xingfang
Wang, Tao
论文数: 0引用数: 0
h-index: 0
机构:
Yale Univ, Dept Biostat, Yale Sch Publ Hlth, New Haven, CT USASoutheast Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
机构:
Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, SingaporeNanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Lian, Heng
Liang, Hua
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Stat, Washington, DC 20052 USANanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
Liang, Hua
Wang, Lan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USANanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
机构:
Univ York, Dept Econ & Related Studies, York YO10 5DD, N Yorkshire, EnglandUniv York, Dept Econ & Related Studies, York YO10 5DD, N Yorkshire, England
Chen, Jia
Li, Degui
论文数: 0引用数: 0
h-index: 0
机构:
Univ York, Dept Math, York YO10 5DD, N Yorkshire, EnglandUniv York, Dept Econ & Related Studies, York YO10 5DD, N Yorkshire, England
Li, Degui
Liang, Hua
论文数: 0引用数: 0
h-index: 0
机构:
George Washington Univ, Dept Stat, Washington, DC 20052 USAUniv York, Dept Econ & Related Studies, York YO10 5DD, N Yorkshire, England
Liang, Hua
Wang, Suojin
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Univ, Dept Stat, College Stn, TX 77843 USAUniv York, Dept Econ & Related Studies, York YO10 5DD, N Yorkshire, England