Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation.

被引:29
作者
Cortazar, C [1 ]
Elgueta, M [1 ]
Felmer, P [1 ]
机构
[1] UNIV CHILE,FCFM,DEPT ING MATEMAT,SANTIAGO 3,CHILE
关键词
D O I
10.1080/03605309608821194
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:507 / 520
页数:14
相关论文
共 13 条
[1]  
Berestycki H., 1991, Bol Soc Brasileira Mat, V22, P1, DOI [DOI 10.1007/BF01244896, 10.1007/BF01244896]
[2]  
CHEN XY, 1989, J DIFFER EQUATIONS, V78, P16
[3]  
CORTAZAR C, IN PRESS ADV PARTIAL
[4]   ON A BLOW-UP SET FOR THE QUASI-LINEAR HEAT-EQUATION U(T)=(U(SIGMA)U(X))X+U(SIGMA+1) [J].
GALAKTIONOV, VA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 101 (01) :66-79
[5]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[6]  
Gilbarg Davis, 1982, ELLIPTIC PARTIAL DIF, Vsecond
[8]   BLOW-UP BEHAVIOR OF ONE-DIMENSIONAL SEMILINEAR PARABOLIC EQUATIONS [J].
HERRERO, MA ;
VELAZQUEZ, JJL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (02) :131-189
[9]  
Kaper H., 1993, DIFFERENTIAL INTEGRA, V6, P1045
[10]   RADIAL SYMMETRY OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC-EQUATIONS IN R(N) [J].
LI, Y ;
NI, WM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (5-6) :1043-1054