A novel comparative study for detection of Covid-19 on CT lung images using texture analysis, machine learning, and deep learning methods

被引:43
|
作者
Yasar, Huseyin [1 ]
Ceylan, Murat [2 ]
机构
[1] Minist Hlth Republ Turkey, Ankara, Turkey
[2] Konya Tech Univ, Fac Engn & Nat Sci, Dept Elect & Elect Engn, Konya, Turkey
关键词
Covid-19; Convolutional neural networks (CNN); Deep learning; Lung CT classification; Machine learning; Texture analysis methods; CORONAVIRUS DISEASE; DIAGNOSIS; 2019-NCOV; PATIENT; WUHAN;
D O I
10.1007/s11042-020-09894-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Covid-19 virus outbreak that emerged in China at the end of 2019 caused a huge and devastating effect worldwide. In patients with severe symptoms of the disease, pneumonia develops due to Covid-19 virus. This causes intense involvement and damage in lungs. Although the emergence of the disease occurred a short time ago, many literature studies have been carried out in which these effects of the disease on the lungs were revealed by the help of lung CT imaging. In this study, 1.396 lung CT images in total (386 Covid-19 and 1.010 Non-Covid-19) were subjected to automatic classification. In this study, Convolutional Neural Network (CNN), one of the deep learning methods, was used which suggested automatic classification of CT images of lungs for early diagnosis of Covid-19 disease. In addition, k-Nearest Neighbors (k-NN) and Support Vector Machine (SVM) was used to compare the classification successes of deep learning with machine learning. Within the scope of the study, a 23-layer CNN architecture was designed and used as a classifier. Also, training and testing processes were performed for Alexnet and Mobilenetv2 CNN architectures as well. The classification results were also calculated for the case of increasing the number of images used in training for the first 23-layer CNN architecture by 5, 10, and 20 times using data augmentation methods. To reveal the effect of the change in the number of images in the training and test clusters on the results, two different training and testing processes, 2-fold and 10-fold cross-validation, were performed and the results of the study were calculated. As a result, thanks to these detailed calculations performed within the scope of the study, a comprehensive comparison of the success of the texture analysis method, machine learning, and deep learning methods in Covid-19 classification from CT images was made. The highest mean sensitivity, specificity, accuracy, F-1 score, and AUC values obtained as a result of the study were 0,9197, 0,9891, 0,9473, 0,9058, 0,9888; respectively for 2-fold cross-validation, and they were 0,9404, 0,9901, 0,9599, 0,9284, 0,9903; respectively for 10-fold cross-validation.
引用
收藏
页码:5423 / 5447
页数:25
相关论文
共 50 条
  • [41] Blockchain-Federated-Learning and Deep Learning Models for COVID-19 Detection Using CT Imaging
    Kumar, Rajesh
    Khan, Abdullah Aman
    Kumar, Jay
    Zakria
    Golilarz, Noorbakhsh Amiri
    Zhang, Simin
    Ting, Yang
    Zheng, Chengyu
    Wang, Wenyong
    IEEE SENSORS JOURNAL, 2021, 21 (14) : 16301 - 16314
  • [42] A novel deep learning-based method for COVID-19 pneumonia detection from CT images
    Luo, Ju
    Sun, Yuhao
    Chi, Jingshu
    Liao, Xin
    Xu, Canxia
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [43] Analysis on novel coronavirus (COVID-19) using machine learning methods
    Yadav, Milind
    Perumal, Murukessan
    Srinivas, M.
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [45] Comparative Analysis of COVID-19 X-ray Images Classification Using Convolutional Neural Network, Transfer Learning, and Machine Learning Classifiers Using Deep Features
    Rekha Rajagopal
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2021, 31 (02) : 313 - 322
  • [46] Deep Learning-Based COVID-19 Detection Using Lung Parenchyma CT Scans
    Kaya, Zeynep
    Kurt, Zuhal
    Koca, Nizameddin
    Cicek, Sumeyye
    Isik, Sahin
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 261 - 275
  • [47] Sentiment Analysis of COVID-19 Tweets by Machine Learning and Deep Learning Classifiers
    Jain, Ritanshi
    Bawa, Seema
    Sharma, Seemu
    ADVANCES IN DATA AND INFORMATION SCIENCES, 2022, 318 : 329 - 339
  • [48] Detecting COVID-19 in chest images based on deep transfer learning and machine learning algorithms
    Rezaeijo, Seyed Masoud
    Ghorvei, Mohammadreza
    Abedi-Firouzjah, Razzagh
    Mojtahedi, Hesam
    Zarch, Hossein Entezari
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2021, 52 (01)
  • [49] Detection of COVID-19 using deep learning on x-ray lung images
    Odeh, Abd AlRahman
    Alomar, Ayah
    Aljawarneh, Shadi
    PeerJ Computer Science, 2022, 8
  • [50] Deep Residual Learning based on ResNet50 for COVID-19 Recognition in Lung CT Images*
    Ferjaoui, Radhia
    Cherni, Mohamed Ali
    Abidi, Fathia
    Zidi, Asma
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 407 - 412