Best proximity point theorems for cyclic p-contractions with some consequences and applications

被引:40
作者
Aslantas, Mustafa [1 ]
Sahin, Hakan [2 ]
Altun, Ishak [3 ]
机构
[1] Cankiri Karatekin Univ, Fac Sci, Dept Math, TR-18100 Cankiri, Turkey
[2] Amasya Univ, Fac Sci & Arts, Dept Math, TR-5220 Amasya, Turkey
[3] Kirikkale Univ, Fac Sci & Arts, Dept Math, TR-71450 Yahsihan, Kirikkale, Turkey
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2021年 / 26卷 / 01期
关键词
best proximity point; cyclic p-contractions; fixed point; boundary value problem; EXISTENCE; PROPERTY;
D O I
10.15388/namc.2021.26.21415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept of cyclic p-contraction pair for single-valued mappings. Then we present some best proximity point results for such mappings defined on proximally complete pair of subsets of a metric space. Also, we provide some illustrative examples that compared our results with some earliest. Finally, by taking into account a fixed point consequence of our main result we give an existence and uniqueness result for a common solution of a system of second order boundary value problems.
引用
收藏
页码:113 / 129
页数:17
相关论文
共 27 条
[1]  
Abkar A., 2016, FIXED POINT THEORY A, V2016, P66, DOI [10.1186/s13663-016-0557-9, DOI 10.1186/S13663-016-0557-9]
[2]   Best Proximity Points for Some Classes of Proximal Contractions [J].
Alghamdi, Maryam A. ;
Shahzad, Naseer ;
Vetro, Francesca .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[3]   Best Proximity Points of MT-Cyclic Contractions with Property UC [J].
Aydi, Hassen ;
Lakzian, Hosein ;
Mitrovic, Zoran D. ;
Radenovic, Stojan .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (07) :871-882
[4]  
Aydi H, 2015, ELECTRON J DIFFER EQ
[5]  
Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI DOI 10.4064/FM-3-1-133-181
[6]   Best proximity point theorems for proximal cyclic contractions [J].
Basha, S. Sadiq ;
Shahzad, N. ;
Vetro, C. .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (04) :2647-2661
[7]   Extensions of Banach's Contraction Principle [J].
Basha, S. Sadiq .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (05) :569-576
[8]   Existence and convergence of best proximity points [J].
Eldred, A. Anthony ;
Veeramani, P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) :1001-1006
[9]   Pythagorean Property and Best-Proximity Point Theorems [J].
Espinola, Rafael ;
Kosuru, G. Sankara Raju ;
Veeramani, P. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (02) :534-550
[10]   Cyclic (noncyclic) φ-condensing operator and its application to a system of differential equations [J].
Gabeleh, Moosa ;
Moshokoa, Seithuti Philemon ;
Vetro, Calogero .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2019, 24 (06) :985-1000